login
A104679
a(n) = C(n+5,5)*C(n+10,5).
1
252, 2772, 16632, 72072, 252252, 756756, 2018016, 4900896, 11027016, 23279256, 46558512, 88884432, 162954792, 288304632, 494236512, 823727520, 1338557220, 2125943820, 3307023720, 5047562520, 7571343780, 11176745580, 16257084480, 23325382080, 33044291280
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
G.f.: 252 / (1-x)^11. - Colin Barker, Feb 07 2015
a(n) = A000389(n+5)*A000389(n+10) = 252*A001287(n+11). - R. J. Mathar, Nov 29 2015
From Amiram Eldar, Aug 30 2022: (Start)
Sum_{n>=0} 1/a(n) = 5/1134.
Sum_{n>=0} (-1)^n/a(n) = 1280*log(2)/63 - 447047/31752. (End)
EXAMPLE
If n=0 then C(0+5,0+0)*C(0+10,5) = C(5,0)*C(10,5) = 1*252 = 252.
If n=4 then C(4+5,4+0)*C(4+10,5) = C(9,4)*C(14,5) = 126*2002 = 252252.
MATHEMATICA
Table[Binomial[n+5, n]Binomial[n+10, 5], {n, 0, 20}] (* Harvey P. Dale, Feb 06 2015 *)
PROG
(PARI) Vec(252/(1-x)^11 + O(x^100)) \\ Colin Barker, Feb 07 2015
(Magma) [Binomial(n+5, n)*Binomial(n+10, 5): n in [0..30]]; // G. C. Greubel, Nov 25 2017
CROSSREFS
Cf. A062190.
Sequence in context: A172223 A154073 A166783 * A117281 A152466 A004535
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, Apr 22 2005
EXTENSIONS
Corrected and extended by Harvey P. Dale, Feb 06 2015
STATUS
approved