login
Numbers n such that n^2 = 29*k^2 + 29*k +1, k sequence = A104652.
1

%I #16 Jun 13 2015 00:51:46

%S 1,175,16589,36191,3430525,325177579,709415981,67245150875,

%T 6374130886969,13905972023371,1318139444021225,124945713321188759,

%U 272584862892702361,25838169314458901575,2449185866147811166949,5343208468516779656951,506479793583883944651925

%N Numbers n such that n^2 = 29*k^2 + 29*k +1, k sequence = A104652.

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,19602,0,0,-1).

%F define a(1)=1, a(2)=175, a(3)=16589, a(4)=19602*a(1)+a(3), a(5)=19602*a(2)+a(2), a(6)=19602*a(3)+a(1), then a(n)=19602*a(n-3)-a(n-6).

%F G.f.: x*(1+x)*(x^4+174*x^3+16415*x^2+174*x+1) / ( (x^2-27*x+1)*(x^4+27*x^3+728*x^2+27*x+1) ). - _R. J. Mathar_, Aug 23 2011

%Y Cf. A104652.

%K nonn,easy

%O 1,2

%A _Pierre CAMI_, Apr 22 2005

%E More terms from _Colin Barker_, Apr 16 2014