login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104633 Triangle T(n,k) = k*(k-n-1)*(k-n-2)/2 read by rows, 1<=k<=n. 3
1, 3, 2, 6, 6, 3, 10, 12, 9, 4, 15, 20, 18, 12, 5, 21, 30, 30, 24, 15, 6, 28, 42, 45, 40, 30, 18, 7, 36, 56, 63, 60, 50, 36, 21, 8, 45, 72, 84, 84, 75, 60, 42, 24, 9, 55, 90, 108, 112, 105, 90, 70, 48, 27, 10, 66, 110, 135 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The triangle can be constructed multiplying the triangle A(n,k)=n-k+1 (if 1<=k<=n, else 0) by the triangle B(n,k) =k (if 1<=k<=n, else 0).

Swapping the two triangles of this matrix product would generate A104634.

LINKS

G. C. Greubel, Rows n=1..100 of triangle, flattened

EXAMPLE

First few rows of the triangle:

1;

3, 2;

6, 6, 3;

10, 12, 9, 4;

15, 20, 18, 12, 5;

21, 30, 30, 24, 15, 6;

28, 42, 45, 40, 30, 18, 7;

36, 56, 63, 60, 50, 36, 21, 8;

...

e.g. Col. 3 = 3 * (1, 3, 6, 10, 15...) = 3, 9, 18, 30, 45...

MAPLE

A104633 := proc(n, k) k*(k-n-1)*(k-n-2)/2 ; end proc:

seq(seq(A104633(n, k), k=1..n), n=1..16) ; # R. J. Mathar, Mar 03 2011

MATHEMATICA

Table[k*(k-n-1)*(k-n-2)/2, {n, 1, 20}, {k, 1, n}] // Flatten (* G. C. Greubel, Aug 12 2018 *)

PROG

(PARI) for(n=1, 20, for(k=1, n, print1(k*(k-n-1)*(k-n-2)/2, ", "))) \\ G. C. Greubel, Aug 12 2018

(MAGMA) [[k*(k-n-1)*(k-n-2)/2: k in [1..n]]: n in [1..20]]; // G. C. Greubel, Aug 12 2018

CROSSREFS

Cf. A062707, A158824, A104634, A001296, A000332 (row sums).

Sequence in context: A189073 A107271 A196565 * A102022 A064684 A098071

Adjacent sequences:  A104630 A104631 A104632 * A104634 A104635 A104636

KEYWORD

nonn,tabl,easy

AUTHOR

Gary W. Adamson, Mar 18 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 22:17 EST 2019. Contains 329134 sequences. (Running on oeis4.)