The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A104629 Expansion of (1-2*x-sqrt(1-4*x))/(x^2 * (1+2*x+sqrt(1-4*x))). 5
 1, 2, 6, 18, 57, 186, 622, 2120, 7338, 25724, 91144, 325878, 1174281, 4260282, 15548694, 57048048, 210295326, 778483932, 2892818244, 10786724388, 40347919626, 151355847012, 569274150156, 2146336125648, 8110508473252 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Diagonal sums of A039598. a(n)=A000957(n+3). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA a(n) = (1 + Sum_{k=0..n+2} C(k)*(-2)^k)/(8*(-2)^n), where C(n) = Catalan numbers. Conjecture: 2*(n+3)*a(n) +(-7*n-9)*a(n-1) +2*(-2*n-3)*a(n-2)=0. - R. J. Mathar, Oct 30 2014 MATHEMATICA CoefficientList[Series[((1-2x-Sqrt[1-4x])/(1+2x+Sqrt[1-4x]))/x^2, {x, 0, 30}], x] (* Harvey P. Dale, Jul 23 2016 *) Table[(1 + Sum[CatalanNumber[n]*(-2)^k, {k, 0, n+2}])/(8*(-2)^n), {n, 0, 30}] (* G. C. Greubel, Aug 12 2018 *) PROG (PARI) x='x+O('x^30); Vec((1-2*x-sqrt(1-4*x))/(x^2*(1+2*x+sqrt(1-4*x)))) \\ G. C. Greubel, Aug 12 2018 (PARI) for(n=0, 30, print1((1 + sum(k=0, n+2, (-2)^k*binomial(2*k, k)/(k+1)))/(8*(-2)^n), ", ")) \\ G. C. Greubel, Aug 12 2018 (MAGMA) m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-2*x-Sqrt(1-4*x))/(x^2*(1+2*x+Sqrt(1-4*x))))); // G. C. Greubel, Aug 12 2018 CROSSREFS Cf. A064310. Sequence in context: A209797 A064310 A126983 * A000957 A307496 A339044 Adjacent sequences:  A104626 A104627 A104628 * A104630 A104631 A104632 KEYWORD easy,nonn AUTHOR Paul Barry, Mar 17 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 06:11 EST 2020. Contains 338781 sequences. (Running on oeis4.)