login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104624 Expansion of exp( asinh( -2*x ) ) in powers of x. 3
1, -2, 2, 0, -2, 0, 4, 0, -10, 0, 28, 0, -84, 0, 264, 0, -858, 0, 2860, 0, -9724, 0, 33592, 0, -117572, 0, 416024, 0, -1485800, 0, 5348880, 0, -19389690, 0, 70715340, 0, -259289580, 0, 955277400, 0, -3534526380, 0, 13128240840, 0, -48932534040, 0, 182965127280, 0, -686119227300, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

First column in inverse of A054335.

With offset 1 the coefficient sequence of series reversion of A000984 (binomial(2n,n)) also with offset 1. [Michael Somos, Jan 14 2011]

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.

FORMULA

G.f.: sqrt( 1 + 4*x^2 ) - 2*x = exp( asinh( -2*x ) ). - Michael Somos, Jan 14 2011

The positive sequence 1,2,2,0,2,.... has g.f. 2(1+x)-sqrt(1-4x^2). - Paul Barry, Oct 10 2007

From Vladimir Kruchinin, Jan 16 2011 (Start)

The o.g.f. A(x) satisfies A(x)=x*sqrt(1-4*A(x)),

a(n) = 1/(n*(n+1)) * sum(j=0...n+1, j * 2^(j) * binomial(2*n-j-1,n-1) * binomial(n+1,j) * (-1)^(n-j)). (End)

Conjecture: n*a(n) +(n-1)*a(n-1) +4*(n-3)*a(n-2) +4*(n-4)*a(n-3)=0. - R. J. Mathar, Nov 15 2012

If n is even, a(n) ~ (-1)^(1+n/2) * 2^(n+1) * n^(n-1) / exp(n). - Vaclav Kotesovec, Oct 23 2013

G.f.: 2*S(0) -1-2*x-4*x^2, where S(k) = 2*k+1 + x^2*(2*k+3)/(1 + x^2*(2*k+1)/S(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 23 2013

a(n) = (-1)^n*2*hypergeom([-n+1, 2-n], [2], -1). - Peter Luschny, Sep 23 2014

EXAMPLE

1 - 2*x + 2*x^2 - 2*x^4 + 4*x^6 - 10*x^8 + 28*x^10 - 84*x^12 + 264*x^14 + ...

MAPLE

s := proc(n) option remember; `if`(n<2, n+1, 4*(n-2)*s(n-2)/(n+1)) end: A104624 := n -> `if`(n<2, (-1)^n*(n+1), (-1)^(n/2-1)*s(n-1)); seq(A104624(n), n=0..47); # Peter Luschny, Sep 23 2014

MATHEMATICA

CoefficientList[ Series[ Exp[ ArcSinh[ -2x]], {x, 0, 49}], x]

Table[(-1)^n 2 HypergeometricPFQ[{-n+1, 2-n}, {2}, -1], {n, 0, 46}] (* Peter Luschny, Sep 23 2014 *)

PROG

(PARI) {a(n) = if( n<0, 0, polcoeff( sqrt( 1 + 4*x^2 + x*O(x^n) ) - 2*x, n ) )} /* Michael Somos, Jan 14 2011 */

(Sage)

def A104624(n):

    if n < 2: return (-1)^n*(n+1)

    if n % 2 == 1: return 0

    return (-1)^(n/2+1)*binomial(n, n/2)/(n-1)

[A104624(n) for n in range(47)] # Peter Luschny, Sep 23 2014

CROSSREFS

Sequence in context: A120439 A248512 A182122 * A193863 A273496 A285193

Adjacent sequences:  A104621 A104622 A104623 * A104625 A104626 A104627

KEYWORD

easy,sign

AUTHOR

Paul Barry, Mar 17 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 25 19:28 EDT 2017. Contains 287059 sequences.