login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104624 Expansion of exp( asinh( -2*x ) ) in powers of x. 3
1, -2, 2, 0, -2, 0, 4, 0, -10, 0, 28, 0, -84, 0, 264, 0, -858, 0, 2860, 0, -9724, 0, 33592, 0, -117572, 0, 416024, 0, -1485800, 0, 5348880, 0, -19389690, 0, 70715340, 0, -259289580, 0, 955277400, 0, -3534526380, 0, 13128240840, 0, -48932534040, 0, 182965127280, 0, -686119227300, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

First column in inverse of A054335.

With offset 1 the coefficient sequence of series reversion of A000984 (binomial(2n,n)) also with offset 1. [Michael Somos, Jan 14 2011]

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.

FORMULA

G.f.: sqrt( 1 + 4*x^2 ) - 2*x = exp( asinh( -2*x ) ). - Michael Somos, Jan 14 2011

The positive sequence 1,2,2,0,2,.... has g.f. 2(1+x)-sqrt(1-4x^2). - Paul Barry, Oct 10 2007

From Vladimir Kruchinin, Jan 16 2011 (Start)

The o.g.f. A(x) satisfies A(x)=x*sqrt(1-4*A(x)),

a(n) = 1/(n*(n+1)) * sum(j=0...n+1, j * 2^(j) * binomial(2*n-j-1,n-1) * binomial(n+1,j) * (-1)^(n-j)). (End)

Conjecture: n*a(n) +(n-1)*a(n-1) +4*(n-3)*a(n-2) +4*(n-4)*a(n-3)=0. - R. J. Mathar, Nov 15 2012

If n is even, a(n) ~ (-1)^(1+n/2) * 2^(n+1) * n^(n-1) / exp(n). - Vaclav Kotesovec, Oct 23 2013

G.f.: 2*S(0) -1-2*x-4*x^2, where S(k) = 2*k+1 + x^2*(2*k+3)/(1 + x^2*(2*k+1)/S(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 23 2013

a(n) = (-1)^n*2*hypergeom([-n+1, 2-n], [2], -1). - Peter Luschny, Sep 23 2014

EXAMPLE

1 - 2*x + 2*x^2 - 2*x^4 + 4*x^6 - 10*x^8 + 28*x^10 - 84*x^12 + 264*x^14 + ...

MAPLE

s := proc(n) option remember; `if`(n<2, n+1, 4*(n-2)*s(n-2)/(n+1)) end: A104624 := n -> `if`(n<2, (-1)^n*(n+1), (-1)^(n/2-1)*s(n-1)); seq(A104624(n), n=0..47); # Peter Luschny, Sep 23 2014

MATHEMATICA

CoefficientList[ Series[ Exp[ ArcSinh[ -2x]], {x, 0, 49}], x]

Table[(-1)^n 2 HypergeometricPFQ[{-n+1, 2-n}, {2}, -1], {n, 0, 46}] (* Peter Luschny, Sep 23 2014 *)

PROG

(PARI) {a(n) = if( n<0, 0, polcoeff( sqrt( 1 + 4*x^2 + x*O(x^n) ) - 2*x, n ) )} /* Michael Somos, Jan 14 2011 */

(Sage)

def A104624(n):

    if n < 2: return (-1)^n*(n+1)

    if n % 2 == 1: return 0

    return (-1)^(n/2+1)*binomial(n, n/2)/(n-1)

[A104624(n) for n in range(47)] # Peter Luschny, Sep 23 2014

CROSSREFS

Sequence in context: A120439 A248512 A182122 * A193863 A273496 A286576

Adjacent sequences:  A104621 A104622 A104623 * A104625 A104626 A104627

KEYWORD

easy,sign

AUTHOR

Paul Barry, Mar 17 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 17:44 EST 2017. Contains 295004 sequences.