The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A104558 Triangle, read by rows, equal to the matrix inverse of A104557 and related to Laguerre polynomials. 2
 1, -1, 1, 0, -2, 1, 0, 2, -4, 1, 0, 0, 6, -6, 1, 0, 0, -6, 18, -9, 1, 0, 0, 0, -24, 36, -12, 1, 0, 0, 0, 24, -96, 72, -16, 1, 0, 0, 0, 0, 120, -240, 120, -20, 1, 0, 0, 0, 0, -120, 600, -600, 200, -25, 1, 0, 0, 0, 0, 0, -720, 1800, -1200, 300, -30, 1, 0, 0, 0, 0, 0, 720, -4320, 5400, -2400, 450, -36, 1, 0, 0, 0, 0, 0, 0, 5040, -15120, 12600, -4200, 630, -42, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Even-indexed rows are found in A066667 (generalized Laguerre polynomials). Odd-indexed rows are found in A021009 (Laguerre polynomials L_n(x)). Row sums equal A056920 (offset 1). Absolute row sums equal A056953 (offset 1). LINKS G. C. Greubel, Rows n=0..100 of triangle, flattened FORMULA T(n, k) = (-1)^(n-k)*(n-k)!*C(1+[n/2], k+1-[(n+1)/2])*C([(n+1)/2], k-[n/2]). EXAMPLE Rows begin: 1; -1,1; 0,-2,1; 0,2,-4,1; 0,0,6,-6,1; 0,0,-6,18,-9,1; 0,0,0,-24,36,-12,1; 0,0,0,24,-96,72,-16,1; 0,0,0,0,120,-240,120,-20,1; 0,0,0,0,-120,600,-600,200,-25,1; ... Unsigned columns read downwards equals rows of matrix inverse A104557 read backwards: 1; 1,1; 2,2,1; 6,6,4,1; 24,24,18,6,1; 120,120,96,36,9,1; ... MATHEMATICA T[n_, k_] := (-1)^(n - k)*(n - k)!*Binomial[1 + Floor[n/2], k + 1 - Floor[(n + 1)/2]]*Binomial[Floor[(n+1)/2], k -Floor[n/2]]; Table[T[n, k], {n, 0, 20}, {k, 0, n}]//Flatten (* G. C. Greubel, May 14 2018 *) PROG (PARI) {T(n, k)=(-1)^(n-k)*(n-k)!*binomial(1+n\2, k+1-(n+1)\2)* binomial( (n+1)\2, k-n\2)}; (Magma) /* As triangle */ [[(-1)^(n-k)*Factorial(n-k)*Binomial(1+ Floor(n/2), k +1 -Floor((n+1)/2))*Binomial(Floor((n+1)/2), k - Floor(n/2)): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 14 2018 CROSSREFS Cf. A104557, A066667, A021009, A056920, A056953. Sequence in context: A110280 A061009 A144106 * A206022 A115247 A204163 Adjacent sequences: A104555 A104556 A104557 * A104559 A104560 A104561 KEYWORD sign,tabl AUTHOR Paul D. Hanna, Mar 16 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 23:05 EST 2022. Contains 358572 sequences. (Running on oeis4.)