login
A104476
a(n) = binomial(n+7,7)*binomial(n+11,7).
1
330, 6336, 61776, 411840, 2123550, 9060480, 33372768, 109219968, 324246780, 886828800, 2261413440, 5427392256, 12352970916, 26829982080, 55895796000, 112183843200, 217706770710, 409800980160, 750266946000, 1339149240000, 2335141487250, 3985308138240
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
FORMULA
From Amiram Eldar, Sep 01 2022: (Start)
Sum_{n>=0} 1/a(n) = 539*Pi^2 - 114905813/21600.
Sum_{n>=0} (-1)^n/a(n) = 1741019/7200 - 49*Pi^2/2. (End)
EXAMPLE
a(0): C(0+7,7)*C(0+11,7) = C(7,7)*C(11,7) = 1*330 = 330;
a(7): C(7+7,7)*C(7+11,7) = C(14,7)*C(18,7) = 3432*31824 = 109219968.
MATHEMATICA
f[n_] := Binomial[n + 7, 7]*Binomial[n + 11, 7]; Table[ f[n], {n, 0, 19}] (* Robert G. Wilson v, Apr 20 2005 *)
PROG
(PARI) vector(30, n, n--; binomial(n+7, 7)*binomial(n+11, 7)) \\ Michel Marcus, Jul 31 2015
(Magma) [Binomial(n+7, 7)*Binomial(n+11, 7): n in [0..30]]; // Vincenzo Librandi, Jul 31 2015
(Python)
A104476_list, m = [], [3432, -1716, 660, 330, 330, 330, 330, 330, 330, 330, 330, 330, 330, 330, 330]
for _ in range(10**2):
A104476_list.append(m[-1])
for i in range(14):
m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
CROSSREFS
Sequence in context: A126997 A205993 A027807 * A140908 A256586 A319718
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, Apr 18 2005
EXTENSIONS
More terms from Robert G. Wilson v, Apr 20 2005
STATUS
approved