%I #27 Apr 17 2024 10:31:26
%S 1,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
%T 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
%U 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
%N Number of ways to split 1, 2, 3, ..., 2n into 2 arithmetic progressions each with n terms.
%C The common difference in an arithmetic progression must be a positive integer. - _David A. Corneth_, Apr 14 2024
%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1).
%F a(1) = 1, a(2) = 3, a(n) = 2 for n >= 3. Proof of the latter: if the common difference in an aritmetic procression, starting with a number at least 1, is at least 3 then the largest term in that arithmetic progression is at least 1 + 3*(n-1) = 3*n - 2. But 3*n - 2 > 2*n for n > 2. - _David A. Corneth_, Apr 14 2024
%F G.f.: x*(1 + 2*x - x^2)/(1 - x). - _Stefano Spezia_, Apr 14 2024
%e From _R. J. Mathar_, Apr 14 2024: (Start)
%e a(2)=3 offers 3 ways of splitting (1,2,3,4): {(1,2),(3,4)}, {(1,3),(2,4)}, {(1,4),(2,3)}.
%e a(n)=2 for n>=3 because there are at least the two ways of splitting (1,2,..,2n) into the even and odd numbers. (End)
%o (PARI) a(n) = if(n <= 2, [1,3][n], 2) \\ _David A. Corneth_, Apr 14 2024
%Y Cf. A104429, A104430, A104431, A104432, A104433, A104434, A104436, A104437, A104438, A104439, A104440, A104441, A104442, A104443.
%K nonn,easy
%O 1,2
%A _Jonas Wallgren_, Mar 17 2005
%E More terms from _David A. Corneth_, Apr 14 2024