login
A104407
Number of Hamiltonian groups of order <= n.
3
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12
OFFSET
1,16
REFERENCES
Robert D. Carmichael, Introduction to the Theory of Groups of Finite Order, New York, Dover, 1956.
John C. Lennox and Stewart. E. Stonehewer, Subnormal Subgroups of Groups, Oxford University Press, 1987.
LINKS
Boris Horvat, Gašper Jaklič, and Tomaž Pisanski, On the number of hamiltonian groups, Mathematical Communications, Vol. 10, No. 1 (2005), pp. 89-94; arXiv preprint, arXiv:math/0503183 [math.CO], 2005.
Tomaž Pisanski and Thomas W. Tucker, The genus of low rank hamiltonian groups, Discrete Math. 78 (1989), 157-167.
Eric Weisstein's World of Mathematics, Hamiltonian Group.
FORMULA
a(n) ~ c * n, where c = A021002 * A048651 / 4 = 0.16568181590156732257... . - Amiram Eldar, Oct 03 2023
MATHEMATICA
orders[n_]:=Map[Last, FactorInteger[n]]; a[n_]:=Apply[Times, Map[PartitionsP, orders[n]]]; e[n_]:=n/ 2^IntegerExponent[n, 2]; h[n_]/; Mod[n, 8]==0:=a[e[n]]; h[n_]:=0; numberOfHamiltonianGroupsOfOrderLEQThanN[n_]:=Map[Apply[Plus, # ]&, Table[Take[Map[h, Table[i, {i, 1, n}]], i], {i, 1, n}]];
CROSSREFS
Partial sums of A104488.
Sequence in context: A133878 A132292 A110656 * A054897 A261226 A003108
KEYWORD
nonn,easy
AUTHOR
Boris Horvat (Boris.Horvat(AT)fmf.uni-lj.si), Gasper Jaklic (Gasper.Jaklic(AT)fmf.uni-lj.si), Tomaz Pisanski, Apr 19 2005
STATUS
approved