login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104390 2-Smith numbers. 3
32, 42, 60, 70, 104, 152, 231, 315, 316, 322, 330, 342, 361, 406, 430, 450, 540, 602, 610, 612, 632, 703, 722, 812, 1016, 1027, 1029, 1108, 1162, 1190, 1246, 1261, 1304, 1314, 1316, 1351, 1406, 1470, 1510, 1603, 2013, 2054, 2065, 2070, 2071, 2106, 2114 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

McDaniel, W. L., "The Existence of infinitely Many k-Smith numbers", Fibonacci Quarterly, 25(1987), pp. 76-80.

LINKS

Table of n, a(n) for n=1..47.

S. S. Gupta, Smith Numbers.

EXAMPLE

32 is a 2-Smith number because sum of the digits of its prime factors, i.e., Sp (32) = Sp(2*2*2*2*2)= 2 + 2 + 2 + 2 + 2 = 10, which is equal to twice the digit sum of 32, i.e., 2*S(32) = 2*(3 + 2) = 10.

MATHEMATICA

d[n_]:=IntegerDigits[n]; tr[n_]:=Transpose[FactorInteger[n]]; Select[Range[2120], 2Total[d[#]]==Total[d@tr[#][[1]]*tr[#][[2]], 2]&] (* Jayanta Basu, Jun 04 2013 *)

CROSSREFS

Cf. A006753, A104391.

Sequence in context: A167309 A159007 A114042 * A167528 A269230 A229115

Adjacent sequences:  A104387 A104388 A104389 * A104391 A104392 A104393

KEYWORD

nonn,base

AUTHOR

Eric W. Weisstein, Mar 04 2005 and Shyam Sunder Gupta, Mar 11 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 19:13 EST 2016. Contains 278683 sequences.