login
A104386
Numbers k such that the average of the k-th and (k+1)-th primes is a repdigit.
3
2, 3, 4, 25, 29, 603, 6363181, 21366409911, 279238341033925, 2907021742443974, 11220808305309952, 11885037375341198280
OFFSET
1,1
FORMULA
(prime(k) + prime(k+1))/2 = repdigit.
PROG
(Python)
from itertools import count, islice
from sympy import isprime, prevprime, primepi
def agen():
for d in count(1):
ru = int("1"*d)
for r in range(ru, 10*ru, ru):
if r > 2:
p = prevprime(r)
if isprime(r + (r-p)) and prevprime(r+(r-p)) == p:
yield primepi(p)
print(list(islice(agen(), 7))) # Michael S. Branicky, Jun 30 2022
CROSSREFS
Cf. A054268.
Corresponding primes A104387, A104388, repdigits A104389.
Sequence in context: A055006 A139050 A043309 * A171558 A044906 A255312
KEYWORD
nonn,base,hard,more
AUTHOR
Zak Seidov, Mar 04 2005
EXTENSIONS
a(8) from Giovanni Resta, Apr 05 2006
a(9) from Michael S. Branicky, Jul 02 2022
a(10)-a(12) from Chai Wah Wu, Jun 01 2024
STATUS
approved