login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104325 Number of runs of equal bits in the Dual Zeckendorf (binary) representation of n. 2
1, 2, 1, 3, 2, 1, 4, 3, 3, 2, 1, 5, 4, 3, 4, 3, 3, 2, 1, 6, 5, 5, 4, 3, 5, 4, 3, 4, 3, 3, 2, 1, 7, 6, 5, 6, 5, 5, 4, 3, 6, 5, 5, 4, 3, 5, 4, 3, 4, 3, 3, 2, 1, 8, 7, 7, 6, 5, 7, 6, 5, 6, 5, 5, 4, 3, 7, 6, 5, 6, 5, 5, 4, 3, 6, 5, 5, 4, 3, 5, 4, 3, 4, 3, 3, 2, 1, 9, 8, 7, 8, 7, 7, 6, 5, 8, 7, 7, 6, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Sequence has some interesting fractal properties (plot it!)

LINKS

Table of n, a(n) for n=1..100.

Ron Knott using Fibonacci Numbers to represent whole numbers

Casey Mongoven, Sonification of multiple Fibonacci-related sequences, Annales Mathematicae et Informaticae, 41 (2013) pp. 175-192.

EXAMPLE

The Dual Zeckendorf representation of 13 is 10110(fib) corresponding to {8, 3, 2}

The largest set of Fibonacci numbers whose sum is n (cf. the Zeckendorf rep is the smallest set). This is composed of runs of one 1, one 0, two 1's, one 0 i.e. 4 runs in all so a(13)=4

MAPLE

dualzeckrep:=proc(n)local i, z; z:=zeckrep(n); i:=1; while i<=nops(z)-2 do if z[i]=1 and z[i+1]=0 and z[i+2]=0 then z[i]:=0; z[i+1]:=1; z[i+2]:=1; if i>3 then i:=i-2 fi else i:=i+1 fi od; if z[1]=0 then z:=subsop(1=NULL, z) fi; z end proc: countruns:=proc(s)local i, c, elt; elt:=s[1]; c:=1; for i from 2 to nops(s) do if s[i]<>s[i-1] then c:=c+1 fi od; c end proc: seq(countruns(dualzeckrep(n)), n=1..100);

CROSSREFS

Cf. A014417, A104324.

Sequence in context: A212536 A188277 A135227 * A204925 A133084 A118851

Adjacent sequences:  A104322 A104323 A104324 * A104326 A104327 A104328

KEYWORD

nonn,hear

AUTHOR

Ron Knott, Mar 01 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 27 11:25 EDT 2017. Contains 288788 sequences.