login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104324 The Fibonacci word over the nonnegative integers; or, the number of runs of identical bits in the binary Zeckendorf representation of n. 10
0, 1, 2, 2, 3, 2, 3, 4, 2, 3, 4, 4, 5, 2, 3, 4, 4, 5, 4, 5, 6, 2, 3, 4, 4, 5, 4, 5, 6, 4, 5, 6, 6, 7, 2, 3, 4, 4, 5, 4, 5, 6, 4, 5, 6, 6, 7, 4, 5, 6, 6, 7, 6, 7, 8, 2, 3, 4, 4, 5, 4, 5, 6, 4, 5, 6, 6, 7, 4, 5, 6, 6, 7, 6, 7, 8, 4, 5, 6, 6, 7, 6, 7, 8, 6, 7, 8, 8, 9, 2, 3, 4, 4, 5, 4, 5, 6, 4, 5, 6, 6, 7, 4, 5, 6, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Image of 0 under repeated application of the morphism phi = {2i -> 2i,2i+1; 2i+1 -> 2i+2: i = 0,1,2,3,...}. - N. J. A. Sloane, Jun 30 2017

This sequence has some interesting fractal properties (plot it!).

First occurrence of k=0,1,2,... is at 0,1,2,4,7,12,20,33,54, ..., A000071(k+1): Fibonacci numbers - 1. - Robert G. Wilson v, Apr 25 2006

Read mod 2 gives the Fibonacci word A003849. The differences, halved, give A213911.

REFERENCES

E. Zeckendorf, Repr├ęsentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Li├Ęge 41, 179-182, 1972.

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..28656 [First 10000 terms from Reinhard Zumkeller]

Ron Knott, Using Fibonacci Numbers to Represent Whole Numbers

Casey Mongoven, Sonification of multiple Fibonacci-related sequences, Annales Mathematicae et Informaticae, 41 (2013) pp. 175-192.

Jiemeng Zhang, Zhixiong Wen, Wen Wu, Some Properties of the Fibonacci Sequence on an Infinite Alphabet, Electronic Journal of Combinatorics, 24(2) (2017), #P2.52.

FORMULA

a(n) = A007895(n) + A213911(n). - Reinhard Zumkeller, Mar 10 2013

EXAMPLE

14 = 13+1 as a sum of Fibonacci numbers = 100001(in Fibonacci base) using the least number of 1's (Zeckendorf Rep): it consists of 3 runs: one 1, four 0's, one 1, so a(14)=3.

This sequence may be broken up into blocks of lengths 1,1,2,3,5,8,... (the nonzero Fibonacci numbers). The first occurrence of a number indicates the start of a new block. The first few blocks are:

0,

1,

2,2,

3,2,3,

4,2,3,4,4,

5,2,3,4,4,5,4,5,

6,2,3,4,4,5,4,5,6,4,5,6,6,

7,2,3,4,4,5,4,5,6,4,5,6,6,7,4,5,6,6,7,6,7,

8,2,3,4,4,5,4,5,6,4,5,6,6,7,4,5,6,6,7,6,7,8,4,5,6,6,7,6,7,8,6,7,8,8,

... (see also A288576). -  N. J. A. Sloane, Jun 30 2017

MAPLE

with(combinat, fibonacci):fib:=fibonacci: zeckrep:=proc(N)local i, z, j, n; i:=2; z:=NULL; n:=N; while fib(i)<=n do i:=i+1 od; print(i=fib(i)); for j from i-1 by -1 to 2 do if n>=fib(j) then z:=z, 1; n:=n-fib(j) else z:=z, 0 fi od; [z] end proc: countruns:=proc(s)local i, c, elt; elt:=s[1]; c:=1; for i from 2 to nops(s) do if s[i]<>s[i-1] then c:=c+1 fi od; c end proc: seq(countruns(zeckrep(n)), n=1..100);

MATHEMATICA

f[n_Integer] := Block[{k = Ceiling[ Log[ GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; While[ fr[[1]] == 0, fr = Rest@fr]; Length@ Split@ fr]; Array[f, 105] (* Robert G. Wilson v, Apr 25 2006 *)

PROG

(Haskell)

import Data.List (group)

a104324 = length . map length . group . a213676_row

-- Reinhard Zumkeller, Mar 10 2013

CROSSREFS

Cf. A007895, A014417, A104325, A189920, A213676, A213911.

See also the Fibonacci word A003849.

For partial sums see A288575.

See A288576 for another view of the initial blocks.

Sequence in context: A237715 A238458 A182744 * A193212 A131818 A222111

Adjacent sequences:  A104321 A104322 A104323 * A104325 A104326 A104327

KEYWORD

nonn,look

AUTHOR

Ron Knott, Mar 01 2005

EXTENSIONS

Entry revised by N. J. A. Sloane, Jun 30 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 20 06:32 EDT 2017. Contains 290824 sequences.