|
|
A104237
|
|
Expansion of (1 + x^2 - x^3 + 4*x^4 - 3*x^5 + 2*x^6)/((x^5 - x^4 + 2*x^3 + x + 1)*(x - 1)*(x + 1)^2).
|
|
1
|
|
|
1, -2, 5, -11, 26, -53, 104, -198, 375, -700, 1299, -2401, 4432, -8167, 15038, -27676, 50925, -93686, 172337, -316999, 583078, -1072473, 1972612, -3628226, 6673379, -12274288, 22575967, -41523709, 76374044, -140473803, 258371642
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
A floretion-generated sequence involving tribonacci numbers. Formula for the g.f. provided by Alec Mihailovs. See sequence A104187 for the sequence generated without using a cyclic transformation (i->j, j->k, k->i), i.e. 1lesforrokseq (refer to FAMP Code).
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (-2,0,0,0,2,0,0,1).
|
|
FORMULA
|
G.f.: (1 + x^2 - x^3 + 4*x^4 - 3*x^5 + 2*x^6)/((x^5 - x^4 + 2*x^3 + x + 1)*(x - 1)*(x + 1)^2).
a(n) = -2*a(n-1) + 2*a(n-5) + a(n-8) for n>7. - Colin Barker, May 21 2019
|
|
MATHEMATICA
|
LinearRecurrence[{-2, 0, 0, 0, 2, 0, 0, 1}, {1, -2, 5, -11, 26, -53, 104, -198}, 40] (* Harvey P. Dale, May 07 2016 *)
|
|
PROG
|
Floretion Algebra Multiplication Program, FAMP Code: 1lesforcycrokseq[A*B} with A = - .5'ii' + .5'jj' + .5'kk' + .5e and B = + 'kj'. 1vesforcycrokseq[A*B] = A000004. ForType: 1A.
(PARI) Vec((1 - x + x^2)*(1 + x + x^2 - x^3 + 2*x^4) / ((1 - x)*(1 + x)^2*(1 + x^2)*(1 + x - x^2 + x^3)) + O(x^40)) \\ Colin Barker, May 21 2019
|
|
CROSSREFS
|
Cf. A104187.
Sequence in context: A127075 A053429 A266879 * A085945 A005469 A218575
Adjacent sequences: A104234 A104235 A104236 * A104238 A104239 A104240
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
Creighton Dement, Apr 02 2005
|
|
STATUS
|
approved
|
|
|
|