This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A104187 G.f. -(1+x^2+x^4)/((x^3+x^2+x-1)*(x-1)^2). 1
 1, 3, 8, 18, 38, 76, 147, 279, 523, 973, 1802, 3328, 6136, 11302, 20805, 38285, 70437, 129575, 238348, 438414, 806394, 1483216, 2728087, 5017763, 9229135, 16975057, 31222030 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A floretion-generated sequence involving tribonacci numbers. LINKS Index entries for linear recurrences with constant coefficients, signature (3, -2, 0, -1, 1). FORMULA a(n+2) - 2*a(n+1) + a(n) = A081172(n+4). a(n) = (1/2) [A000073(n+3) + A000073(n+6) - 3n - 6 ]. - Ralf Stephan, May 20 2007 a(0)=1, a(1)=3, a(2)=8, a(3)=18, a(4)=38, a(n) = 3*a(n-1) - 2*a(n-2) - a(n-4) + a(n-5). - Harvey P. Dale, Jun 14 2011 MATHEMATICA CoefficientList[Series[-(1+x^2+x^4)/((x^3+x^2+x-1)*(x-1)^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{3, -2, 0, -1, 1}, {1, 3, 8, 18, 38}, 30] (* Harvey P. Dale, Jun 14 2011 *) PROG Floretion Algebra Multiplication Program, FAMP Code: 1tesforrokseq[A*B] = A = - .5'ii' + .5'jj' + .5'kk' + .5e B = + 'kj', 1vesforrokseq[A*B] = A000004, ForType: 1A. CROSSREFS Cf. A081172. Sequence in context: A036642 A000235 A006478 * A051633 A131051 A172265 Adjacent sequences:  A104184 A104185 A104186 * A104188 A104189 A104190 KEYWORD nonn AUTHOR Creighton Dement, Apr 01 2005 EXTENSIONS Definition corrected by Harvey P. Dale, Jun 14 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 15:25 EDT 2019. Contains 323532 sequences. (Running on oeis4.)