login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104161 G.f. x(-x^2 + x - 1)/((x-1)^2(x^2 + x - 1)). 15
0, 1, 2, 5, 10, 19, 34, 59, 100, 167, 276, 453, 740, 1205, 1958, 3177, 5150, 8343, 13510, 21871, 35400, 57291, 92712, 150025, 242760, 392809, 635594, 1028429, 1664050, 2692507, 4356586, 7049123 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

A floretion-generated sequence.

Partial sums of Leonardo numbers A001595. - Jonathan Vos Post, Jan 01 2011

A107909(a(n)) = A000975(n). - Reinhard Zumkeller, May 28 2005

LINKS

Table of n, a(n) for n=0..31.

Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).

FORMULA

Superseeker results (incomplete): a(2) - 2a(n+1) + a(n) = A006355(n+1) (Number of binary vectors of length n containing no singletons); a(n+1) - a(n) = A001595(n) (2-ranks of difference sets constructed from Segre hyperovals); a(n) + n + 1 = A001595(n+1).

From Ross La Haye, Aug 03 2005: (Start)

a(n) = 2(Fibonacci(n+2) - 1) - n.

a(n) = sum_{k=0..n} A101220(n-k, 0, k). (End)

From Gary W. Adamson, Apr 02 2006: (Start)

a(n) = a(n-1) + a(n-2) + n-1.

a(n) = row sums of A117915, starting (1, 2, 5, 10...). (End)

a(n) = sum_{k=0..n} A109754(n-k,k). - Ross La Haye, Apr 12 2006

a(n) = (sum_{k=0..n} (n-k)Fibonacci(k-1) + Fibonacci(k)) - n. - Ross La Haye, May 31 2006

From R. J. Mathar, Apr 18 2008: (Start)

a(n) = -2 - n + (-A094214)^n*(1-A010499/5) + (1+A010499/5)/A094214^n.

a(n) = A006355(n+3) - n - 2. (End)

a(0)=0, a(1)=1, a(2)=2, a(3)=5, a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4). - Harvey P. Dale, Sep 06 2012

MATHEMATICA

a=0; b=1; Table[c=b+a+n; a=b; b=c, {n, -1, 80}] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2011 *)

CoefficientList[Series[x (-x^2+x-1)/((x-1)^2(x^2+x-1)), {x, 0, 40}], x] (* or *) LinearRecurrence[{3, -2, -1, 1}, {0, 1, 2, 5}, 40] (* Harvey P. Dale, Sep 06 2012 *)

PROG

Floretion Algebra Multiplication Program, FAMP Code: 1vesrokseq[ (- .25'i - .25i' - .25'ii' + .25'jj' + .25'kk' + .25'jk' + .25'kj' - .25e)('i + i' + 'ji' + 'ki' + e) ] RokType: Y[sqa.Findk()] = Y[sqa.Findk()] + p.

CROSSREFS

Cf. A006355, A001595, A145912.

Sequence in context: A132210 A000098 A024827 * A065613 A249557 A061705

Adjacent sequences:  A104158 A104159 A104160 * A104162 A104163 A104164

KEYWORD

easy,nonn

AUTHOR

Creighton Dement, Mar 10 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 27 07:59 EDT 2017. Contains 287203 sequences.