This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A104161 G.f.: x*(1 - x + x^2)/((1-x)^2 * (1 - x - x^2)). 16
 0, 1, 2, 5, 10, 19, 34, 59, 100, 167, 276, 453, 740, 1205, 1958, 3177, 5150, 8343, 13510, 21871, 35400, 57291, 92712, 150025, 242760, 392809, 635594, 1028429, 1664050, 2692507, 4356586, 7049123 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A floretion-generated sequence. Partial sums of Leonardo numbers A001595. - Jonathan Vos Post, Jan 01 2011 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1). FORMULA Superseeker results (incomplete): a(2) - 2a(n+1) + a(n) = A006355(n+1) (Number of binary vectors of length n containing no singletons); a(n+1) - a(n) = A001595(n) (2-ranks of difference sets constructed from Segre hyperovals); a(n) + n + 1 = A001595(n+1). A107909(a(n)) = A000975(n). - Reinhard Zumkeller, May 28 2005 From Ross La Haye, Aug 03 2005: (Start) a(n) = 2*(Fibonacci(n+2) - 1) - n. a(n) =Ssum_{k=0..n} A101220(n-k, 0, k). (End) From Gary W. Adamson, Apr 02 2006: (Start) a(n) = a(n-1) + a(n-2) + n-1. a(n) = row sums of A117915, starting (1, 2, 5, 10...). (End) a(n) = Sum_{k=0..n} A109754(n-k,k). - Ross La Haye, Apr 12 2006 a(n) = (Sum_{k=0..n} (n-k)Fibonacci(k-1) + Fibonacci(k)) - n. - Ross La Haye, May 31 2006 From R. J. Mathar, Apr 18 2008: (Start) a(n) = -2 - n + (-A094214)^n*(1-A010499/5) + (1+A010499/5)/A094214^n. a(n) = A006355(n+3) - n - 2. (End) a(0)=0, a(1)=1, a(2)=2, a(3)=5, a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4). - Harvey P. Dale, Sep 06 2012 MATHEMATICA a=0; b=1; Table[c=b+a+n; a=b; b=c, {n, -1, 80}] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2011 *) CoefficientList[Series[x*(1-x+x^2)/((1-x)^2*(1-x-x^2)), {x, 0, 40}], x] (* or *) LinearRecurrence[{3, -2, -1, 1}, {0, 1, 2, 5}, 40] (* Harvey P. Dale, Sep 06 2012 *) PROG Floretion Algebra Multiplication Program, FAMP Code: 1vesrokseq[ (- .25'i - .25i' - .25'ii' + .25'jj' + .25'kk' + .25'jk' + .25'kj' - .25e)('i + i' + 'ji' + 'ki' + e) ] RokType: Y[sqa.Findk()] = Y[sqa.Findk()] + p. (PARI) x='x+O('x^50); concat(0, Vec(x*(1-x+x^2)/((1-x)^2*(1-x-x^2)))) \\ G. C. Greubel, Sep 26 2017 CROSSREFS Cf. A006355, A001595, A145912. Sequence in context: A132210 A000098 A024827 * A288579 A065613 A249557 Adjacent sequences:  A104158 A104159 A104160 * A104162 A104163 A104164 KEYWORD easy,nonn AUTHOR Creighton Dement, Mar 10 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.