%I #22 Sep 01 2024 10:26:05
%S 0,5,58,219,548,1105,1950,3143,4744,6813,9410,12595,16428,20969,26278,
%T 32415,39440,47413,56394,66443,77620,89985,103598,118519,134808,
%U 152525,171730,192483,214844,238873,264630,292175,321568,352869,386138,421435
%N a(n) = n * (10*n^2 - 6n + 1) = n * A087348(n).
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F Recurrence relation: a(n)=4a(n-1)-6a(n-2)+4a(n-3)-a(n-4) for n>=4; a(0)=0, a(1)=5, a(2)=58, a(3)=219.
%F O.g.f.: x*(5+38*x+17*x^2)/(-1+x)^4 = 132/(-1+x)^3+60/(-1+x)^4+89/(-1+x)^2+17/(-1+x) . - _R. J. Mathar_, Dec 05 2007
%p a[0]:=0:a[1]:=5:a[2]:=58:a[3]:=219: for n from 4 to 40 do a[n]:=4*a[n-1]-6*a[n-2]+4*a[n-3]-a[n-4] od: seq(a[n], n=0..40);
%t Table[n(10n^2-6n+1),{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,5,58,219},40] (* _Harvey P. Dale_, Sep 01 2018 *)
%o (PARI) a(n)=n*(10*n^2 - 6*n + 1) \\ _Charles R Greathouse IV_, Oct 18 2022
%K nonn,easy
%O 0,2
%A _Roger L. Bagula_, Mar 31 2005
%E Edited by _N. J. A. Sloane_, May 20 2006, Jun 06 2007