login
a(n) is the least k such that k*(k+1)*Mersenne-prime(n)+1 is prime.
0

%I #8 Jul 18 2021 04:42:36

%S 1,2,3,12,8,3,5,14,17,69,189,42,392,167,377,12,2007,434,744,705,1089,

%T 1109,7833,7328,1271,192,6770,2379

%N a(n) is the least k such that k*(k+1)*Mersenne-prime(n)+1 is prime.

%e 1*2*(2^2-1)+1 = 7 is prime, so a(1) = 1.

%e 2*3*(2^3-1)+1 = 43 is prime, so a(2) = 2.

%e 3*4*(2^5-1)+1 = 373 is prime, so a(3) = 3.

%t f[p_] := Module[{k = 1}, While[! PrimeQ[k*(k + 1)*p + 1], k++]; k]; f /@ (2^MersennePrimeExponent[Range[15]] - 1) (* _Amiram Eldar_, Jul 18 2021 *)

%Y Cf. A000043, A000668.

%K nonn,more

%O 1,2

%A _Pierre CAMI_, Mar 31 2005

%E a(14) inserted and a(24)-a(28) added by _Amiram Eldar_, Jul 18 2021