login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104016 Devaraj numbers: squarefree r-prime-factor (r>1) integers N=p1*...*pr such that phi(N)=(p1-1)*...*(pr-1) divides gcd(p1-1,...,pr-1)^2*(N-1)^(r-2). 5
561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 11305, 15841, 29341, 39865, 41041, 46657, 52633, 62745, 63973, 75361, 96985, 101101, 115921, 126217, 162401, 172081, 188461, 252601, 278545, 294409, 314821, 334153, 340561, 399001, 401401, 410041 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A.K. Devaraj conjectured that these numbers are exactly Carmichael numbers. It was proved (see Alekseyev link) that every Carmichael number is indeed a Devaraj number, but the converse is not true. Devaraj numbers that are not Carmichael are given by A104017.

These numbers can't be even, since phi(N) is always even (N>2) but p1=2 implies that gcd{pi-1}=1 and N-1 is odd. - M. F. Hasler, Apr 03 2009

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..1000

Max Alekseyev, Pomerance's proof, June 2005.

PROG

(PARI) { Devaraj() = for(n=2, 10^8, f=factorint(n); if(vecmax(f[, 2])>1, next); f=f[, 1]; r=length(f); if(r==1, next); d=f[1]-1; p=f[1]-1; for(i=2, r, d=gcd(d, f[i]-1); p*=f[i]-1); if( ((n-1)^(r-2)*d^2)%p==0, print1(" ", n)) ) }

From M. F. Hasler, Apr 03 2009: (Start)

(PARI) isA104016(n)={ local(f=factor(n)); vecmax(f[, 2])==1 & #(f*=[1, -1]~)>1 & gcd(f)^2*(n-1)^(#f-2)%prod(i=1, #f, f[i])==0 }

/* To print the list: */ forstep( n=3, 10^6, 2, vecmax((f=factor(n))[, 2])>1 & next; #(f*=[1, -1]~)>1 | next; gcd(f)^2*(n-1)^(#f-2)%prod(i=1, #f, f[i]) | print1(n", "))

/* The following version could be efficient for large omega(n) */

isA104016(n) = issquarefree(n) & !isprime(n) & Mod(n-1, prod(i=1, #n=factor(n)*[1, -1]~, n[i]))^(#n-2)*gcd(n)^2==0 \\ (End)

CROSSREFS

Cf. A104017, A002997.

Sequence in context: A006971 A270698 A218483 * A002997 A087788 A173703

Adjacent sequences:  A104013 A104014 A104015 * A104017 A104018 A104019

KEYWORD

nonn

AUTHOR

Max Alekseyev, Feb 25 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 24 07:54 EDT 2017. Contains 283985 sequences.