

A104016


Devaraj numbers: squarefree rprimefactor (r>1) integers N=p1*...*pr such that phi(N)=(p11)*...*(pr1) divides gcd(p11,...,pr1)^2*(N1)^(r2).


5



561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 11305, 15841, 29341, 39865, 41041, 46657, 52633, 62745, 63973, 75361, 96985, 101101, 115921, 126217, 162401, 172081, 188461, 252601, 278545, 294409, 314821, 334153, 340561, 399001, 401401, 410041
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A.K. Devaraj conjectured that these numbers are exactly Carmichael numbers. It was proved (see Alekseyev link) that every Carmichael number is indeed a Devaraj number, but the converse is not true. Devaraj numbers that are not Carmichael are given by A104017.
These numbers can't be even, since phi(N) is always even (N>2) but p1=2 implies that gcd{pi1}=1 and N1 is odd.  M. F. Hasler, Apr 03 2009


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..1000
Max Alekseyev, Pomerance's proof, June 2005.


PROG

(PARI) { Devaraj() = for(n=2, 10^8, f=factorint(n); if(vecmax(f[, 2])>1, next); f=f[, 1]; r=length(f); if(r==1, next); d=f[1]1; p=f[1]1; for(i=2, r, d=gcd(d, f[i]1); p*=f[i]1); if( ((n1)^(r2)*d^2)%p==0, print1(" ", n)) ) }
From M. F. Hasler, Apr 03 2009: (Start)
(PARI) isA104016(n)={ local(f=factor(n)); vecmax(f[, 2])==1 & #(f*=[1, 1]~)>1 & gcd(f)^2*(n1)^(#f2)%prod(i=1, #f, f[i])==0 }
/* To print the list: */ forstep( n=3, 10^6, 2, vecmax((f=factor(n))[, 2])>1 & next; #(f*=[1, 1]~)>1  next; gcd(f)^2*(n1)^(#f2)%prod(i=1, #f, f[i])  print1(n", "))
/* The following version could be efficient for large omega(n) */
isA104016(n) = issquarefree(n) & !isprime(n) & Mod(n1, prod(i=1, #n=factor(n)*[1, 1]~, n[i]))^(#n2)*gcd(n)^2==0 \\ (End)


CROSSREFS

Cf. A104017, A002997.
Sequence in context: A006971 A270698 A218483 * A002997 A087788 A173703
Adjacent sequences: A104013 A104014 A104015 * A104017 A104018 A104019


KEYWORD

nonn


AUTHOR

Max Alekseyev, Feb 25 2005


STATUS

approved



