This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A104016 Devaraj numbers: squarefree r-prime-factor (r>1) integers N=p1*...*pr such that phi(N)=(p1-1)*...*(pr-1) divides gcd(p1-1,...,pr-1)^2*(N-1)^(r-2). 5
 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 11305, 15841, 29341, 39865, 41041, 46657, 52633, 62745, 63973, 75361, 96985, 101101, 115921, 126217, 162401, 172081, 188461, 252601, 278545, 294409, 314821, 334153, 340561, 399001, 401401, 410041 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A.K. Devaraj conjectured that these numbers are exactly Carmichael numbers. It was proved (see Alekseyev link) that every Carmichael number is indeed a Devaraj number, but the converse is not true. Devaraj numbers that are not Carmichael are given by A104017. These numbers can't be even, since phi(N) is always even (N>2) but p1=2 implies that gcd{pi-1}=1 and N-1 is odd. - M. F. Hasler, Apr 03 2009 LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..1000 Max Alekseyev, Pomerance's proof, June 2005. PROG (PARI) Devaraj() = for(n=2, 10^8, f=factorint(n); if(vecmax(f[, 2])>1, next); f=f[, 1]; r=length(f); if(r==1, next); d=f[1]-1; p=f[1]-1; for(i=2, r, d=gcd(d, f[i]-1); p*=f[i]-1); if( ((n-1)^(r-2)*d^2)%p==0, print1(" ", n)) ) (PARI) isA104016(n)= local(f=factor(n)); vecmax(f[, 2])==1 && #(f*=[1, -1]~)>1 && gcd(f)^2*(n-1)^(#f-2)%prod(i=1, #f, f[i])==0 /* To print the list: */ forstep( n=3, 10^6, 2, vecmax((f=factor(n))[, 2])>1 && next; #(f*=[1, -1]~)>1 || next; gcd(f)^2*(n-1)^(#f-2)%prod(i=1, #f, f[i]) || print1(n", ")) /* The following version could be efficient for large omega(n) */ isA104016(n) = issquarefree(n) && !isprime(n) && Mod(n-1, prod(i=1, #n=factor(n)*[1, -1]~, n[i]))^(#n-2)*gcd(n)^2==0 \\ M. F. Hasler, Apr 03 2009 CROSSREFS Cf. A104017, A002997. Sequence in context: A006971 A270698 A218483 * A002997 A087788 A173703 Adjacent sequences:  A104013 A104014 A104015 * A104017 A104018 A104019 KEYWORD nonn AUTHOR Max Alekseyev, Feb 25 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.