login
Reduced denominators of the hypercube line-picking integrand sqrt(Pi)*I(n,0).
1

%I #24 Jan 19 2024 08:18:29

%S 3,5,21,9,11,39,15,17,57,21,23,75,27,29,93,33,35,111,39,41,129,45,47,

%T 147,51,53,165,57,59,183,63,65,201,69,71,219,75,77,237,81,83,255,87,

%U 89,273,93,95,291,99,101,309,105,107,327,111,113,345,117,119,363

%N Reduced denominators of the hypercube line-picking integrand sqrt(Pi)*I(n,0).

%C Sequence appears to be trisected into a(3n+1) = 6n-3 = A016945(n-1); a(3n+2) = 6n-1 = A016969(n-1); a(3n+3) = 18n+3. - _Ralf Stephan_, Nov 13 2010

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HypercubeLinePicking.html">Hypercube Line Picking</a>

%F Empirical g.f.: -x*(3*x^5-x^4-3*x^3-21*x^2-5*x-3) / ((x-1)^2*(x^2+x+1)^2). - _Colin Barker_, May 05 2014

%e 2/3, 6/5, 50/21, 38/9, 74/11, 386/39, 206/15, 310/17, 1334/57, 614/21, ...

%t Rest[CoefficientList[Series[-x*(3*x^5-x^4-3*x^3-21*x^2-5*x-3) / ((x-1)^2*(x^2+x+1)^2),{x,0,60}],x]] (* _James C. McMahon_, Jan 18 2024 *)

%Y Cf. A103990.

%K nonn,frac

%O 1,1

%A _Eric W. Weisstein_, Feb 23 2005

%E a(21)-a(60) from _James C. McMahon_, Jan 18 2024