The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A103971 Expansion of (1 - sqrt(1 - 4x - 16x^2))/(2x). 2
 1, 5, 10, 45, 190, 930, 4660, 24445, 131190, 719830, 4013260, 22684370, 129661740, 748252580, 4353379560, 25508284445, 150392391590, 891549228430, 5310994644060, 31775749689670, 190860711108740, 1150473009844380 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Image of c(x), the g.f. of the Catalan numbers A000108 under the mapping g(x) -> (1+4x)g(x(1+4x)). In general, the image of the Catalan numbers under the mapping g(x)->(1+i*x)g(x(1+i*x)) is given by a(n) = Sum_{k=0..n} i^(n-k)C(k)C(k+1,n-k). More generally, the sequence C for which C(0)=a, C(1)=b and C(n+1) = sum(C(k)*C(n-k),k=0..n) has the following g.f. f: f(z) = (1-sqrt(1-4*z*(a-(a^2-b)*z)))/(2*z). We obtain: C(n)=(sum(-1)^(p-1)*2^{n-p}a^{n-2*p-1}*(a^2-b)^p*((2*n-2*p-1)*...*5*3*1/(p!*(n-2*p+1)!)),p=0..floor((n+1)/2)). By following Comtet [Analyse Combinatoire Tomes 1 et 2, PUF, Paris 1970], we obtain also: (n+1)*C(n) - 2*a*(2*n-1)*C(n-1) + 4*(n-2)*(a^2-b)*C(n-2) = 0. - Richard Choulet, Dec 17 2009 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA G.f.: (1-sqrt(1-4x(1+4x))/(2x); a(n) = Sum_{k=0..n} 4^(n-k)*C(k)*C(k+1, n-k). Another recurrence formula: (n+1)*a(n) = 2*(2*n-1)*a(n-1) + 16*(n-2)*a(n-2). - Richard Choulet, Dec 17 2009 a(n) ~ sqrt(10 + 2*sqrt(5))*(2 + 2*sqrt(5))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012 MAPLE n:=30:a(0):=1:a(1):=5: for k from 1 to n do a(k+1):=sum('a(p)*a(k-p)', 'p'=0..k):od:seq(a(k), k=0..n); # Richard Choulet, Dec 17 2009 MATHEMATICA CoefficientList[Series[(1-Sqrt[1-4x-16x^2])/(2x), {x, 0, 30}], x] (* Harvey P. Dale, Apr 02 2012 *) CROSSREFS Cf. A000108, A025227, A025228, A025229, A025230, A025231, A025232. - Richard Choulet, Dec 17 2009 Sequence in context: A328605 A122173 A083515 * A270085 A035406 A103932 Adjacent sequences:  A103968 A103969 A103970 * A103972 A103973 A103974 KEYWORD easy,nonn AUTHOR Paul Barry, Feb 23 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 13 10:24 EDT 2021. Contains 342935 sequences. (Running on oeis4.)