The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A103944 Number of rooted unicursal n-edge maps in the plane (planar with a distinguished outside face). 2
 1, 10, 93, 836, 7355, 63750, 546553, 4646920, 39250935, 329789450, 2758868981, 22995369996, 191074697203, 1583463268366, 13092015636465, 108024564809744, 889730213085167, 7316434446188562, 60078376613838829, 492692533579612180 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., 36, No.4 (2006), 364-387. FORMULA a(n)=n*binomial(2n, n)sum_{i=0..n-2} binomial(n-2, i)(1/(n+1+i)+n/(n+2+i)), for n>1. Recurrence: (n-1)*a(n) = 3*(3*n-4)*a(n-1) - 6*(n-9)*a(n-2) - 8*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 17 2012 a(n) ~ 8^n*sqrt(n)/(6*sqrt(Pi)). - Vaclav Kotesovec, Oct 17 2012 MATHEMATICA Flatten[{1, Table[n*Binomial[2n, n]*Sum[Binomial[n-2, k]*(1/(n+1+k)+n/(n+2+k)), {k, 0, n-2}], {n, 2, 20}]}] (* Vaclav Kotesovec, Oct 17 2012 *) CROSSREFS Cf. A069720, A103945. Sequence in context: A287829 A265242 A262173 * A190989 A224696 A099295 Adjacent sequences:  A103941 A103942 A103943 * A103945 A103946 A103947 KEYWORD easy,nonn AUTHOR Valery A. Liskovets, Mar 17 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 24 18:11 EST 2020. Contains 338616 sequences. (Running on oeis4.)