login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103929 Number of partitions of n into parts but with two kinds of parts of sizes 1 to 10. 2
1, 2, 5, 10, 20, 36, 65, 110, 185, 300, 481, 751, 1162, 1762, 2647, 3918, 5748, 8331, 11981, 17056, 24108, 33787, 47043, 65019, 89336, 121954, 165585, 223542, 300295, 401331, 533937, 707057, 932404, 1224376, 1601571, 2086851, 2709449, 3505228 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

See A103923 for other combinatorial interpretations of a(n).

In general, column m of A008951 is asymptotic to exp(Pi*sqrt(2*n/3)) * 6^(m/2) * n^((m-2)/2) / (4*sqrt(3) * m! * Pi^m), equivalently to 6^(m/2) * n^(m/2) / (m! * Pi^m) * p(n), where p(n) is the partition function A000041. - Vaclav Kotesovec, Aug 28 2015

REFERENCES

H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958 (reprinted 1962), p. 91.

J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.

LINKS

Table of n, a(n) for n=0..37.

FORMULA

G.f.: (product(1/(1-x^k), k=1..10)^2)*product(1/(1-x^j), j=11..infty).

a(n)=sum(A103924(n-10*j), j=0..floor(n/10)), n>=0.

a(n) ~ exp(Pi*sqrt(2*n/3)) * 6^5 * n^4 / (4*sqrt(3) * 10! * Pi^10). - Vaclav Kotesovec, Aug 28 2015

MATHEMATICA

nmax=60; CoefficientList[Series[Product[1/(1-x^k), {k, 1, 10}] * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2015 *)

CROSSREFS

Eleventh column (m=10) of Fine-Riordan triangle A008951 and of triangle A103923, i.e. the p_2(n, m) array of the Gupta et al. reference.

Cf. A000712 (all parts of two kinds).

Sequence in context: A103926 A103927 A103928 * A121597 A000712 A032442

Adjacent sequences:  A103926 A103927 A103928 * A103930 A103931 A103932

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Mar 24 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 16 04:47 EST 2019. Contains 320140 sequences. (Running on oeis4.)