%I #23 May 30 2021 15:38:21
%S 1,2,5,10,20,36,65,110,185,300,480,749,1157,1752,2627,3882,5683,8221,
%T 11796,16756,23627,33036,45881,63257,86689,118036,159837,215211,
%U 288314,384275,509829,673270,885361,1159357,1512235,1964897,2543864,3281686
%N Number of partitions of n into parts but with two kinds of parts of sizes 1 to 9.
%C See A103923 for other combinatorial interpretations of a(n).
%C Also the sum of binomial (D(p), 9) over partitions p of n+45, where D(p) is the number of different part sizes in p. - _Emily Anible_, Jun 09 2018
%D H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958 (reprinted 1962), p. 91.
%D J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
%F G.f.: (Product_{k=1..9} 1/(1-x^k))^2 * Product_{j>=10} 1/(1-x^j).
%F a(n) = Sum_{j=0..floor(n/9)} A103924(n-9*j), n >= 0.
%F a(n) ~ exp(Pi*sqrt(2*n/3)) * 6^(9/2) * n^(7/2) / (4*sqrt(3) * 9! * Pi^9). - _Vaclav Kotesovec_, Aug 28 2015
%t nmax=60; CoefficientList[Series[Product[1/(1-x^k), {k, 1, 9}] * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 28 2015 *)
%t Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@9], {n,0,37}] (* _Robert Price_, Jul 29 2020 *)
%t T[n_, 0] := PartitionsP[n];
%t T[n_, m_] /; (n >= m (m + 1)/2) := T[n, m] = T[n - m, m - 1] + T[n - m, m];
%t T[_, _] = 0;
%t a[n_] := T[n + 45, 9];
%t Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, May 30 2021 *)
%Y Tenth column (m=9) of Fine-Riordan triangle A008951 and of triangle A103923, i.e., the p_2(n, m) array of the Gupta et al. reference.
%Y Cf. A000712 (all parts of two kinds).
%K nonn,easy
%O 0,2
%A _Wolfdieter Lang_, Mar 24 2005