OFFSET
0,2
COMMENTS
See A103923 for other combinatorial interpretations of a(n).
Also the sum of binomial (D(p), 5) over partitions p of n+15, where D(p) is the number of different part sizes in p. - Emily Anible, Jun 09 2018
REFERENCES
H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958 (reprinted 1962), p. 90.
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000
FORMULA
G.f.: (product(1/(1-x^k), k=1..5)^2)*product(1/(1-x^j), j=6..infty).
a(n) = sum(A000710(n-5*j), j=0..floor(n/5)), n>=0.
a(n) ~ 3*n^(3/2) * exp(Pi*sqrt(2*n/3)) / (20*sqrt(2)*Pi^5). - Vaclav Kotesovec, Aug 28 2015
MAPLE
with(numtheory): a:= proc(n) a(n):=`if`(n=0, 1, add(add(d*`if`(d<6, 2, 1), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Sep 14 2014
MATHEMATICA
a[n_] := a[n] = If[n==0, 1, Sum[Sum[d*If[d<6, 2, 1], {d, Divisors[j]}] * a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 28 2015, after Alois P. Heinz *)
nmax=60; CoefficientList[Series[Product[1/(1-x^k), {k, 1, 5}] * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2015 *)
Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@5], {n, 0, 39}] (* Robert Price, Jul 29 2020 *)
T[n_, 0] := PartitionsP[n];
T[n_, m_] /; (n >= m(m+1)/2) := T[n, m] = T[n-m, m-1] + T[n-m, m];
T[_, _] = 0;
a[n_] := T[n+15, 5];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 30 2021 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Mar 24 2005
STATUS
approved