

A103806


Primes p such that both 2p +/ 33 are primes.


3



2, 5, 7, 13, 19, 23, 37, 47, 53, 67, 73, 103, 137, 157, 163, 173, 193, 227, 233, 277, 313, 347, 353, 397, 443, 457, 613, 733, 863, 877, 983, 1087, 1153, 1213, 1327, 1447, 1493, 1733, 1747, 1787, 1867, 2053, 2063, 2153, 2237, 2377, 2383, 2503, 2557, 2657, 2683
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

If, e.g., 29 is not prime (Mathematica considers prime as prime), then the first four terms should be omitted.


LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000


FORMULA

p, 2p33 and 2p+33 all are primes.


MATHEMATICA

Select[Range[2000], PrimeQ[ # ] && PrimeQ[2# + 33] && PrimeQ[2#  33] &]
Select[Prime[Range[400]], AllTrue[2#+{33, 33}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 10 2016 *)


PROG

(MAGMA) [p: p in PrimesUpTo(3000) IsPrime(2*p+33) and IsPrime(2*p33) ] [From Vincenzo Librandi, Jan 28 2011]


CROSSREFS

Cf. A103802, A103803, A103804, A103805.
Sequence in context: A038985 A109652 A045354 * A019359 A038959 A069351
Adjacent sequences: A103803 A103804 A103805 * A103807 A103808 A103809


KEYWORD

nonn


AUTHOR

Zak Seidov, Feb 16 2005


STATUS

approved



