login
A103806
Primes p such that 2p - 33 and 2p + 33 are both primes.
3
2, 5, 7, 13, 19, 23, 37, 47, 53, 67, 73, 103, 137, 157, 163, 173, 193, 227, 233, 277, 313, 347, 353, 397, 443, 457, 613, 733, 863, 877, 983, 1087, 1153, 1213, 1327, 1447, 1493, 1733, 1747, 1787, 1867, 2053, 2063, 2153, 2237, 2377, 2383, 2503, 2557, 2657, 2683
OFFSET
1,1
COMMENTS
If, e.g., -29 is not prime (Mathematica considers -prime as prime), then the first four terms should be omitted.
LINKS
FORMULA
p, 2p-33 and 2p+33 all are primes.
MATHEMATICA
Select[Range[2000], PrimeQ[ # ] && PrimeQ[2# + 33] && PrimeQ[2# - 33] &]
Select[Prime[Range[400]], AllTrue[2#+{33, -33}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 10 2016 *)
PROG
(Magma) [p: p in PrimesUpTo(3000)| IsPrime(2*p+33) and IsPrime(2*p-33) ]; // Vincenzo Librandi, Jan 28 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Feb 16 2005
STATUS
approved