

A103793


Primes from merging of 7 successive digits in decimal expansion of the Golden Ratio, (1+sqrt(5))/2.


31



1618033, 8874989, 1798057, 7204189, 1893911, 1374847, 5386891, 2126633, 6222353, 6354433, 8322661, 1696207, 9631361, 1361443, 1344947, 9874339, 7499887, 6249407, 1210427, 6217711, 7111777, 8053153, 9914669, 8782289
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Leading zeros are not permitted, so each term is 7 digits in length.  Harvey P. Dale, Oct 23 2011


REFERENCES

Mohammad K. Azarian, Problem 123, Missouri Journal of Mathematical Sciences, Vol. 10, No. 3, Fall 1998, p. 176. Solution published in Vol. 12, No. 1, Winter 2000, pp. 6162.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000
The Golden Ratio as explained at MathWorld.com
Expansion of the Golden Ratio done to 20,000 digits as part of project Gutenberg.


MATHEMATICA

With[{len=7}, FromDigits/@Select[Partition[RealDigits[GoldenRatio, 10, 1000][[1]], len, 1], PrimeQ[FromDigits[#]] && IntegerLength[ FromDigits[#]] == len&]] (* Harvey P. Dale, Oct 23 2011 *)


CROSSREFS

Sequence in context: A234410 A069374 A294776 * A064117 A173428 A015334
Adjacent sequences: A103790 A103791 A103792 * A103794 A103795 A103796


KEYWORD

nonn,base


AUTHOR

Andrew G. West (WestA(AT)wlu.edu), Mar 29 2005


EXTENSIONS

Broken URL to Project Gutenberg replaced by Georg Fischer, Jan 03 2009
Offset changed from 0 to 1 by Vincenzo Librandi, Apr 19 2013


STATUS

approved



