login
A103777
Numbers n such that f[n],f[n+1]and f[n+2] are all primes, where f[n]=8*n^2+4*n+1.
1
15, 50, 80, 110, 230, 245, 425, 570, 635, 645, 710, 925, 1440, 1645, 1710, 1815, 2000, 2465, 2635, 2940, 3040, 3090, 3195, 3525, 4260, 4310, 4400, 4885, 5960, 6145, 7030, 7120, 7250, 8430, 8890, 9445, 10265, 11060, 11150, 11710, 11775, 13020, 13565
OFFSET
1,1
COMMENTS
All terms are divisible by 5, hence conjecture: there is no such n that f[n],f[n+1],f[n+2] and f[n+3] are primes.
LINKS
EXAMPLE
15 is a term because f[15]=1861, f[16]=2113 and f[17]=2381 are all primes.
MATHEMATICA
Flatten[Position[Partition[Table[PrimeQ[8n^2+4n+1], {n, 14000}], 3, 1], {True, True, True}]] (* Harvey P. Dale, Oct 08 2012 *)
CROSSREFS
Sequence in context: A020257 A298511 A349855 * A134742 A318084 A191746
KEYWORD
nonn
AUTHOR
Zak Seidov, Feb 15 2005
STATUS
approved