

A103773


Primes from merging of 9 successive digits in decimal expansion of the Golden Ratio, (1+sqrt(5))/2.


31



398874989, 752126633, 250171169, 222104321, 626296313, 381497587, 587012203, 408058879, 410443207, 104432077, 850987433, 433944221, 798731761, 523689427, 287856997, 165339247, 115881863, 993432359, 509040947, 116456299, 602017279, 471753427, 827505131, 248093947
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Leading zeros are not permitted, so each term is 9 digits in length.  Harvey P. Dale, Oct 23 2011
Presumably all 45086079 possible terms eventually occur, probably in the first billion terms or so.  Charles R Greathouse IV, Sep 25 2012


REFERENCES

Mohammad K. Azarian, Problem 123, Missouri Journal of Mathematical Sciences, Vol. 10, No. 3, Fall 1998, p. 176. Solution published in Vol. 12, No. 1, Winter 2000, pp. 6162.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Eric Weisstein's World of Mathematics, Golden Ratio.
Expansion of the Golden Ratio done to 20,000 digits as part of project Gutenberg.


MATHEMATICA

Select[FromDigits/@Partition[RealDigits[GoldenRatio, 10, 2000][[1]], 9, 1], IntegerLength[#]==9&&PrimeQ[#]&] (* Harvey P. Dale, Mar 19 2011 *)


CROSSREFS

Sequence in context: A271022 A015369 A321138 * A172602 A108212 A103124
Adjacent sequences: A103770 A103771 A103772 * A103774 A103775 A103776


KEYWORD

nonn,base


AUTHOR

Andrew G. West (WestA(AT)wlu.edu), Mar 29 2005


EXTENSIONS

Broken URL to Project Gutenberg replaced by Georg Fischer, Jan 03 2009
Extended by Harvey P. Dale, Mar 19 2011


STATUS

approved



