login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103772 Larger of two sides in (a,a,a-1)-integer triangle with integer area. 5
1, 17, 241, 3361, 46817, 652081, 9082321, 126500417, 1761923521, 24540428881, 341804080817, 4760716702561, 66308229755041, 923554499868017, 12863454768397201, 179164812257692801, 2495443916839302017, 34757050023492535441, 484103256412056194161 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Corresponding areas are 0, 120, 25080, 4890480, 949077360, 184120982760, ...

Values (x^2 + y^2)/2, where the pair (x, y) satisfies x^2 - 3y^2 = -2, i.e., a(n) = {(A001834(n))^2 + (A001835(n))^2}/2 = {(A001834(n))^2 + A046184(n)}/2. - Lekraj Beedassy, Jul 13 2006

The heights of these triangles are given in A028230. (A028230(n), A045899(n), A103772(n)) forms a primitive Pythagorean triple.

Shortest side of (a,a+2,a+3) triangle such that median to longest side is integral. Sequence of such medians is A028230. - James R. Buddenhagen, Nov 22 2013

Numbers n such that (n+1)*(3n-1) is a square. - James R. Buddenhagen, Nov 22 2013

LINKS

Colin Barker, Table of n, a(n) for n = 1..850

J. B. Cosgrave, The Gauss-Factorial Motzkin connection (Maple worksheet, change suffix to .mw)

J. B. Cosgrave and K. Dilcher, An Introduction to Gauss Factorials, The American Mathematical Monthly, 118 (Nov. 2011), 812-829.

Project Euler, Problem 94: Almost Equilateral Triangles.

Index entries for linear recurrences with constant coefficients, signature (15,-15,1).

FORMULA

a(n) = (4*A001570(n+1) - 1)/3, n > 0. - Ralf Stephan, May 20 2007

a(n) = (A001353(n))^2 + (A001353(n+1))^2. - Johannes Boot, Oct 26 2010

a(n) = A052530(n)*A052530(n+1) + 1. - Johannes Boot, May 21 2011

G.f.: x*(1+x)^2/((1-x)*(1-14*x+x^2)). - Colin Barker, Apr 09 2012

a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3); a(1)=1, a(2)=17, a(3)=241. - Harvey P. Dale, Jan 02 2016

a(n) = (-1+(7-4*sqrt(3))^n*(2+sqrt(3))-(-2+sqrt(3))*(7+4*sqrt(3))^n)/3. - Colin Barker, Mar 05 2016

a(n) = 14*a(n-1) - a(n-2) + 4. - Vincenzo Librandi, Mar 05 2016

MATHEMATICA

a[1] = 1; a[2] = 17; a[3] = 241; a[n_] := a[n] = 15a[n - 1] - 15a[n - 2] + a[n - 3]; Table[ a[n] - 1, {n, 17}] (* Robert G. Wilson v, Mar 24 2005 *)

LinearRecurrence[{15, -15, 1}, {1, 17, 241}, 20] (* Harvey P. Dale, Jan 02 2016 *)

RecurrenceTable[{a[1] == 1, a[2] == 17, a[n] == 14 a[n-1] - a[n-2] + 4}, a, {n, 20}] (* Vincenzo Librandi, Mar 05 2016 *)

PROG

(PARI) Vec(x*(1+x)^2/((1-x)*(1-14*x+x^2)) + O(x^25)) \\ Colin Barker, Mar 05 2016

(MAGMA) I:=[1, 17]; [n le 2 select I[n] else 14*Self(n-1)-Self(n-2)+4: n in [1..20]]; // Vincenzo Librandi, Mar 05 2016

CROSSREFS

Cf. A102341, A103974, A016064, A011945, A028230.

Sequence in context: A142126 A251769 A290340 * A196987 A051560 A259347

Adjacent sequences:  A103769 A103770 A103771 * A103773 A103774 A103775

KEYWORD

nonn,easy

AUTHOR

Zak Seidov, Feb 23 2005

EXTENSIONS

More terms from Robert G. Wilson v, Mar 24 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 10:26 EST 2020. Contains 331105 sequences. (Running on oeis4.)