login
A103738
a(n) = n! * (sum of reciprocals of parts in all partitions of n into distinct parts).
2
1, 1, 11, 38, 274, 2844, 21888, 231888, 2580912, 37879200, 459884160, 7372650240, 112624905600, 2002334100480, 37047155846400, 721997863372800, 14458523340441600, 320885263596441600, 7222523219238297600, 172441642330718208000, 4367517061604788224000
OFFSET
1,3
LINKS
FORMULA
E.g.f.: A(x)*B(x), where A(x) = Sum_{k>0} x^k/(k*(1+x^k)) and B(x) = Product_{k>0} (1 + x^k).
MAPLE
gf:=sum(x^k/k/(1+x^k), k=1..50)*product((1+x^k), k=1..50): s:=series(gf, x, 50): for n from 1 to 30 do printf(`%d, `, coeff(s, x, n)*n!) od: # James A. Sellers, Apr 10 2005
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
b(n, i-1)+`if`(i>n, 0, (p-> p+[0, p[1]/i])(b(n-i, i-1)))))
end:
a:= n-> n!*b(n$2)[2]:
seq(a(n), n=1..30); # Alois P. Heinz, Sep 11 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, b[n, i - 1] + If[i > n, 0, Function[p, p + {0, p[[1]]/i}][b[n - i, i - 1]]]]]; a[n_] := n!*b[n, n][[2]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Jan 10 2016, after Alois P. Heinz *)
CROSSREFS
Cf. A057623.
Sequence in context: A213775 A133258 A288745 * A348487 A045801 A162261
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Mar 27 2005
EXTENSIONS
More terms from James A. Sellers, Apr 10 2005
STATUS
approved