login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103716 Numerators of sum_{k=1..n} 1/k^10 =: Zeta(10,n). 1

%I

%S 1,1025,60526249,61978938025,605263128567754849,605263138567754849,

%T 170971856382109814342232401,175075181098169912564190119249,

%U 10338014371627802833957102351534201,413520574906423083987893722912609

%N Numerators of sum_{k=1..n} 1/k^10 =: Zeta(10,n).

%C a(n) gives the partial sums, Zeta(10,n), of Euler's Zeta(10). Zeta(k,n) is also called H(k,n) because for k=1 these are the harmonic numbers H(n) = A001008/A002805.

%C For the denominators see A103717 and for the rationals Zeta(10,n) see the W. Lang link under A103345.

%F a(n) = numerator(sum_{k=1..n} 1/k^10).

%F G.f. for rationals Zeta(10, n): polylogarithm(10, x)/(1-x).

%t s=0;lst={};Do[s+=n^1/n^11;AppendTo[lst,Numerator[s]],{n,3*4!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Jan 24 2009 *)

%t Table[ HarmonicNumber[n, 10] // Numerator, {n, 1, 10}] (* _Jean-Fran├žois Alcover_, Dec 04 2013 *)

%Y For k=1..9 see: A001008/A002805, A007406/A007407, A007408/A007409, A007410/A007480, A099828/A069052, A103345/A103346, A103347/A103348, A103349/A103350, A103351/A103352.

%K nonn,frac,easy

%O 1,2

%A _Wolfdieter Lang_, Feb 15 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 21:14 EST 2016. Contains 278694 sequences.