login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103716 Numerators of sum_{k=1..n} 1/k^10 =: Zeta(10,n). 1
1, 1025, 60526249, 61978938025, 605263128567754849, 605263138567754849, 170971856382109814342232401, 175075181098169912564190119249, 10338014371627802833957102351534201, 413520574906423083987893722912609 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) gives the partial sums, Zeta(10,n), of Euler's Zeta(10). Zeta(k,n) is also called H(k,n) because for k=1 these are the harmonic numbers H(n) = A001008/A002805.

For the denominators see A103717 and for the rationals Zeta(10,n) see the W. Lang link under A103345.

LINKS

Table of n, a(n) for n=1..10.

FORMULA

a(n) = numerator(sum_{k=1..n} 1/k^10).

G.f. for rationals Zeta(10, n): polylogarithm(10, x)/(1-x).

MATHEMATICA

s=0; lst={}; Do[s+=n^1/n^11; AppendTo[lst, Numerator[s]], {n, 3*4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 24 2009 *)

Table[ HarmonicNumber[n, 10] // Numerator, {n, 1, 10}] (* Jean-Fran├žois Alcover, Dec 04 2013 *)

CROSSREFS

For k=1..9 see: A001008/A002805, A007406/A007407, A007408/A007409, A007410/A007480, A099828/A069052, A103345/A103346, A103347/A103348, A103349/A103350, A103351/A103352.

Sequence in context: A168119 A272672 A180270 * A031530 A004607 A221008

Adjacent sequences:  A103713 A103714 A103715 * A103717 A103718 A103719

KEYWORD

nonn,frac,easy

AUTHOR

Wolfdieter Lang, Feb 15 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 13:27 EST 2016. Contains 279004 sequences.