login
A103670
Smallest m such that A102730(m) = n.
1
0, 1, 2, 3, 4, 5, 8, 23, 117, 155, 1410, 3702
OFFSET
1,3
COMMENTS
Reinhard Zumkeller conjectures (at A102730) that this sequence is finite. I conjecture the contrary, that a(n) exists for every n. Further, I expect a(n) << n^n. [Charles R Greathouse IV, Aug 21 2011]
EXAMPLE
a(6) = 5: A102730(5) = #{0,1,2,3,4,5} = 6;
a(7) = 8: A102730(8) = #{0,1,2,3,4,7,8} = 7;
a(8) = 23: A102730(23) = #{0,1,2,3,4,5,6,23} = 8;
a(9) = 117: A102730(117) = #{0,1,2,3,4,5,6,7,117} = 9;
a(10) = 155: A102730(155) = #{0,1,2,3,4,5,6,7,8,155} = 10.
CROSSREFS
Sequence in context: A116657 A268274 A079383 * A289081 A105950 A227778
KEYWORD
nonn,hard
AUTHOR
Reinhard Zumkeller, Feb 12 2005
EXTENSIONS
a(11) and a(12) from D. S. McNeil, Aug 21 2011
STATUS
approved