login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103656 a(n) = (1/2)*number of non-degenerate triangular pyramids that can be formed using 4 distinct points chosen from an (n+1) X (n+1) X (n+1) lattice cube. 4
29, 7316, 285400, 4508716, 42071257, 273611708, 1379620392, 5723597124, 20398039209, 64302648044, 183316772048, 480140522044, 1170651602665 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The observed growth rate of CPU time required to compute more terms is approximately ~ n^10.5.

LINKS

Table of n, a(n) for n=1..13.

EXAMPLE

a(1)=29: Only 58 of the A103157(1)=70 possible ways to choose 4 distinct points from the 8 vertices of a cube result in pyramids with volume > 0: 2 regular tetrahedra of volume=1/3 and 56 triangular pyramids of volume=1/6. The remaining A103658(1)=12 configurations result in objects with volume=0. Therefore a(1)=(1/2)*(A103157(1)-A103658(1))=58/2=29.

CROSSREFS

Cf. A103157 binomial((n+1)^3, 4), A103158 tetrahedra in lattice cube, A103658 4-point objects with volume=0 in lattice cube, A103426 non-degenerate triangles in lattice cube.

Sequence in context: A267955 A267909 A265464 * A201489 A028459 A199369

Adjacent sequences:  A103653 A103654 A103655 * A103657 A103658 A103659

KEYWORD

hard,more,nonn

AUTHOR

Hugo Pfoertner, Feb 14 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 09:33 EST 2019. Contains 329843 sequences. (Running on oeis4.)