This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A103633 Triangle read by rows: triangle of repeated stepped binomial coefficients. 2
 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 1, 4, 6, 4, 1, 0, 0, 0, 0, 0, 1, 4, 6, 4, 1, 0, 0, 0, 0, 0, 1, 5, 10, 10, 5, 1, 0, 0, 0, 0, 0, 0, 1, 5, 10, 10, 5, 1, 0, 0, 0, 0, 0, 0, 1, 6, 15, 20, 15, 6, 1, 0, 0, 0, 0, 0, 0, 0, 1, 6, 15 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,14 COMMENTS Row sums are sum{k=0..n, binomial(floor(n/2),n-k)}=(1,1,2,2,4,4,...). Diagonal sums have g.f. (1+x^2)/(1-x^3-x^4) (see A079398). Matrix inverse of the signed triangle (-1)^(n-k)T(n,k) is A103631. Matrix inverse of T(n,k) is the alternating signed version of A103631. Triangle T(n,k), 0<=k<=n, read by rows, given by [0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ....] DELTA [1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938 . - Philippe Deléham, Oct 08 2005 LINKS FORMULA Number triangle T(n, k) = binomial(floor(n/2), n-k). Sum_{n, n>=0} T(n, k) = A000045(k+2) = Fib(k+2) . - Philippe Deléham, Oct 08 2005 Sum_{k, 0<=k<=n}T(n,k)=2^[n/2]=A016116(n). - Philippe Deléham, Dec 03 2006 G.f.: (1+x*y)/(1-x^2*y-x^2*y^2). - Philippe Deléham , Nov 10 2013 T(n,k) = T(n-2,k-1) + T(n-2,k-2) for n>2, T(0,0) = T(,1) = T(2,1) = T(2,2) = 1, T(1,0) = T(2,0) = 0, T(n,k) = 0 if k>n or if k<0. - Philippe Deléham, Nov 10 2013 EXAMPLE Triangle begins: 1, 0,1, 0,1,1, 0,0,1,1, 0,0,0,1,2,1,... CROSSREFS Sequence in context: A281244 A284585 A280456 * A026821 A039964 A035172 Adjacent sequences:  A103630 A103631 A103632 * A103634 A103635 A103636 KEYWORD easy,nonn,tabl AUTHOR Paul Barry, Feb 11 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 15:11 EDT 2019. Contains 328267 sequences. (Running on oeis4.)