login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103584 Numbers in A103543 not congruent to 3 mod 4. 3

%I

%S 62,126,190,254,318,382,446,510,574,638,702,766,830,894,958,1021,1022,

%T 1086,1150,1214,1278,1342,1406,1470,1534,1598,1662,1726,1790,1854,

%U 1918,1982,2045,2046,2110,2174,2238,2302,2366,2430,2494,2558,2622,2686,2750

%N Numbers in A103543 not congruent to 3 mod 4.

%H David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [<a href="http://neilsloane.com/doc/slopey.pdf">pdf</a>, <a href="http://neilsloane.com/doc/slopey.ps">ps</a>], J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.

%t f[n_] := Block[{k = 1, s = 0, l = Max[2, Floor[Log[2, n + 1] + 2]]}, While[k < l, If[ Mod[n + k, 2^k] == 0, s = s + 2^k]; k++ ]; s]; Select[ Complement[ Range[2750], Select[ Range[11000], f[ # ] == 0 &]/4], Mod[ #, 4] != 3 &] (from Robert G. Wilson v Mar 26 2005)

%K nonn

%O 1,1

%A _Benoit Cloitre_ and _Philippe Deléham_, Mar 24 2005

%E More terms from _Robert G. Wilson v_, Mar 26 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified July 30 11:24 EDT 2014. Contains 245063 sequences.