OFFSET
1,22
COMMENTS
LINKS
W. Duke, Stephen J. Greenfield and Eugene R. Speer, Properties of a Quadratic Fibonacci Recurrence, J. Integer Sequences, 1998, #98.1.8.
EXAMPLE
P[3,t]=t^3+t^4; therefore T(3,1)=0, T(3,2)=0, T(3,3)=1, T(3,4)=1.
Triangle begins:
1;
0,1;
0,0,1,1;
0,0,0,1,1,1;
0,0,0,0,1,1,1,1,2,1;
0,0,0,0,0,1,1,1,1,3,3,3,2,1;
MAPLE
P[1]:=t:P[2]:=t^2:for n from 3 to 12 do P[n]:=sort(expand(t*P[n-1]+t^2*P[n-2]^2)) od: d[1]:=1: d[2]:=2: for n from 3 to 20 do d[n]:=2*d[n-2]+2 od: for n from 1 to 9 do seq(coeff(P[n], t^k), k=1..d[n]) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Mar 21 2005
STATUS
approved