Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Sep 11 2018 02:59:01
%S 0,1,1,1,1,1,1,1,3,1,2,1,25,2,1,6,6,19,1,13,3,3,11,29,2,1,6,3,4,2,6,4,
%T 15,6,4,20,4,1,7,16,4,7,22,3,12,13,9,35,2,3,3,52,35,3,32,15,13,10,53,
%U 56,9,16,36,5,8,5,22,3,14,2,64,37,8,22,42,11,22,22,12,11,26,1,54,187,20,9
%N a(n) is the smallest m such that primorial(n)/2 - 2^m is prime.
%H R. Mestrovic, <a href="http://arxiv.org/abs/1202.3670">Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof</a>, arXiv preprint arXiv:1202.3670 [math.HO], 2012-2018.
%e P(2)/2-2^0=2 is prime, so a(2)=0;
%e P(10)/2-2^3=3234846607 is Prime, so a(10)=3.
%t nmax = 2^8192; npd = 1; n = 2; npd = npd*Prime[n]; While[npd < nmax, tn = 1; tt = 2; cp = npd - tt; While[(cp > 1) && (! (PrimeQ[cp])), tn = tn + 1; tt = tt*2; cp = npd - tt]; If[cp < 2, Print["*"], Print[tn]]; n = n + 1; npd = npd*Prime[n]]
%t (* Second program: *)
%t k = 1; a = {}; Do[k = k*Prime[n]; m = 1; While[ ! PrimeQ[k - 2^m], m++ ]; Print[m]; AppendTo[a, m], {n, 2, 200}]; a (* _Artur Jasinski_, Apr 21 2008 *)
%o (PARI) a(n)=my(t=prod(i=2,n,prime(i)),m); while(!isprime(t-2^m),m++); m \\ _Charles R Greathouse IV_, Apr 28 2015
%Y Cf. A002110, A005234, A014545, A018239, A006794, A057704, A057705, A103153, A067026, A067027, A139439, A139440, A139441, A139442, A139443, A139444, A139445, A139446, A139447, A139448, A139449, A139450, A139451, A139452, A139453, A139454, A139455, A139456, A139457, A103514.
%K nonn
%O 2,9
%A _Lei Zhou_, Feb 15 2005
%E Edited by _N. J. A. Sloane_, May 16 2008 at the suggestion of _R. J. Mathar_