login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103514 a(n) is the smallest m such that primorial(n)/2 - 2^m is prime. 24
0, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 25, 2, 1, 6, 6, 19, 1, 13, 3, 3, 11, 29, 2, 1, 6, 3, 4, 2, 6, 4, 15, 6, 4, 20, 4, 1, 7, 16, 4, 7, 22, 3, 12, 13, 9, 35, 2, 3, 3, 52, 35, 3, 32, 15, 13, 10, 53, 56, 9, 16, 36, 5, 8, 5, 22, 3, 14, 2, 64, 37, 8, 22, 42, 11, 22, 22, 12, 11, 26, 1, 54, 187, 20, 9 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,9

LINKS

Table of n, a(n) for n=2..87.

R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012-2018.

EXAMPLE

P(2)/2-2^0=2 is prime, so a(2)=0;

P(10)/2-2^3=3234846607 is Prime, so a(10)=3.

MATHEMATICA

nmax = 2^8192; npd = 1; n = 2; npd = npd*Prime[n]; While[npd < nmax, tn = 1; tt = 2; cp = npd - tt; While[(cp > 1) && (! (PrimeQ[cp])), tn = tn + 1; tt = tt*2; cp = npd - tt]; If[cp < 2, Print["*"], Print[tn]]; n = n + 1; npd = npd*Prime[n]]

(* Second program: *)

k = 1; a = {}; Do[k = k*Prime[n]; m = 1; While[ ! PrimeQ[k - 2^m], m++ ]; Print[m]; AppendTo[a, m], {n, 2, 200}]; a (* Artur Jasinski, Apr 21 2008 *)

PROG

(PARI) a(n)=my(t=prod(i=2, n, prime(i)), m); while(!isprime(t-2^m), m++); m \\ Charles R Greathouse IV, Apr 28 2015

CROSSREFS

Cf. A002110, A005234, A014545, A018239, A006794, A057704, A057705, A103153, A067026, A067027, A139439, A139440, A139441, A139442, A139443, A139444, A139445, A139446, A139447, A139448, A139449, A139450, A139451, A139452, A139453, A139454, A139455, A139456, A139457, A103514.

Sequence in context: A321889 A321751 A188584 * A324123 A016570 A070773

Adjacent sequences:  A103511 A103512 A103513 * A103515 A103516 A103517

KEYWORD

nonn

AUTHOR

Lei Zhou, Feb 15 2005

EXTENSIONS

Edited by N. J. A. Sloane, May 16 2008 at the suggestion of R. J. Mathar

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 10:05 EDT 2019. Contains 328146 sequences. (Running on oeis4.)