The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A103465 Number of polyominoes that can be formed from n regular unit pentagons (or polypents of order n). 12
 1, 1, 2, 7, 25, 118, 551, 2812, 14445, 76092, 403976, 2167116, 11698961, 63544050, 346821209, 1901232614 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Number of 5-polyominoes with n pentagons. A k-polyomino is a non-overlapping union of n regular unit k-gons. Unlike A051738, these are not anchored polypents but simple polypents. - George Sicherman, Mar 06 2006 Polypents (or 5-polyominoes in Koch and Kurz's terminology) can have holes and this enumeration includes polypents with holes. - George Sicherman, Dec 06 2007 LINKS Erich Friedman, Math Magic, September and November 2004. Matthias Koch and Sascha Kurz, Enumeration of generalized polyominoes (preprint) arXiv:math.CO/0605144 S. Kurz, k-polyominoes. G. L. Sicherman, Catalogue of Polypents, at Polyform Curiosities. EXAMPLE a(3)=2 because there are 2 geometrically distinct ways to join 3 regular pentagons edge to edge. CROSSREFS Cf. A103465, A103466, A103467, A103468, A103469, A103470, A103471, A103472, A103473, A120102, A120103, A120104. Cf. A000105, A000577, A000228. Sequence in context: A150535 A076176 A188719 * A103464 A339515 A323658 Adjacent sequences:  A103462 A103463 A103464 * A103466 A103467 A103468 KEYWORD more,nonn AUTHOR Sascha Kurz, Feb 07 2005; definition revised and sequence extended Apr 12 2006 and again Jun 09 2006 EXTENSIONS Entry revised by N. J. A. Sloane, Jun 18 2006 Corrected the dates of the Math Magic pages under "Links." George Sicherman, Nov 08 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 13 00:17 EDT 2021. Contains 342934 sequences. (Running on oeis4.)