login
A103458
a(n) = 7^n + 1 - 0^n.
2
1, 8, 50, 344, 2402, 16808, 117650, 823544, 5764802, 40353608, 282475250, 1977326744, 13841287202, 96889010408, 678223072850, 4747561509944, 33232930569602, 232630513987208, 1628413597910450, 11398895185373144
OFFSET
0,2
COMMENTS
a(n)^3 is palindromic in base 7 (1_7, 1331_7, 1030301_7, 1003003001_7, ...).
FORMULA
G.f.: (1-7*x^2)/((1-x)*(1-7*x)).
a(n) = Sum_{k=0..n} binomial(n, k)*0^(k(n-k))*7^k.
a(n) = A034491(n), n > 0. - R. J. Mathar, Aug 28 2008
a(n) = 7*a(n-1) - 6, with a(1)=8. - Vincenzo Librandi, Dec 29 2010
E.g.f.: -1 + exp(x) + exp(7*x). - G. C. Greubel, Jun 22 2021
MATHEMATICA
Table[7^n +1 -Boole[n==0], {n, 0, 30}] (* G. C. Greubel, Jun 22 2021 *)
PROG
(Magma) [1] cat [7^n + 1: n in [1..30]]; // G. C. Greubel, Jun 22 2021
(Sage) [1]+[7^n + 1 for n in (1..30)] # G. C. Greubel, Jun 22 2021
CROSSREFS
Sequence in context: A180029 A357479 A133129 * A339687 A238841 A100310
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 07 2005
STATUS
approved