login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103440 Sum[d|n, d==1 mod 3, d^2] - Sum[d|n, d==2 mod 3, d^2]. 2
1, -3, 1, 13, -24, -3, 50, -51, 1, 72, -120, 13, 170, -150, -24, 205, -288, -3, 362, -312, 50, 360, -528, -51, 601, -510, 1, 650, -840, 72, 962, -819, -120, 864, -1200, 13, 1370, -1086, 170, 1224, -1680, -150, 1850, -1560, -24, 1584, -2208, 205, 2451, -1803, -288, 2210, -2808, -3, 2880, -2550 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..56.

G. E. Andrews and B. C. Berndt, Your Hit Parade: The Top Ten Most Fascinating Formulas in Ramanujan's Lost Notebook, Notices Amer. Math. Soc., 55 (No. 1, 2008), 18-30. See p. 23, Equation (27).

J. Stienstra, Mahler measure, Eisenstein series and dimers, arXiv:math/0502197 [math.NT], 2005.

FORMULA

G.f.: F(q) = Sum[n>=1, A049347(n-1)*n^2*q^n/(1-q^n) ].

G.f.: F(q) = -qG'(q)/(9G(q)), with G(q) = Prod[n>=1, (1-q^n)^(9n*A049347(n-1)) ].

a(n) is multiplicative with a(3^e) = 1, a(p^e) = a(p) * a(p^(e-1)) - z * a(p^(e-2)) where z = kronecker(-3, p) * p^2 and a(p) = z + 1.

a(3*n) = a(n).

G.f.: Sum_{k>0} x^k * (1 - x^k - 6*x^(2*k) - x^(3*k) + x^(4*k)) / (1 + x^k + x^(2*k))^3. - Michael Somos, Oct 21 2007

G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 - v + w + 3*v^2 - 8*w^2 + 6*v*w - 8*u*w + 6*u*v - 9*v^3 - 54*u*v*w + 72*u*w^2 - 9*u^2*w. - Michael Somos, Dec 23 2007

EXAMPLE

q - 3*q^2 + q^3 + 13*q^4 - 24*q^5 - 3*q^6 + 50*q^7 - 51*q^8 + q^9 + ...

PROG

(PARI) {a(n) = if( n<1, 0, sumdiv( n, d, d^2 * kronecker( -3, d)))} /* Michael Somos, Oct 21 20007 */

(PARI) {a(n) = local(A, p, e, a0, a1, x, y, z); if(n<1, 0, A=factor(n); prod( k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==3, 1, z = kronecker( -3, p) * p^2 ; a0 = 1; a1 = y = z + 1; for(i=2, e, x = y * a1 - z * a0; a0 = a1; a1 = x); a1))))} /* Michael Somos, Oct 21 20007 */

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - eta(x + A)^9 / eta(x^3 + A)^3) / 9, n))} /* Michael Somos, Oct 21 20007 */

CROSSREFS

Equals A103637(n) - A103638(n). Cf. A002173.

A109041(n) = -9 * a(n) unless n=0. A014985(n) = a(2^n). -24 * A134340(n) = a(6*n+5).

Sequence in context: A184828 A053286 A008826 * A116483 A262593 A010290

Adjacent sequences:  A103437 A103438 A103439 * A103441 A103442 A103443

KEYWORD

sign,mult

AUTHOR

Ralf Stephan, Feb 11 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 23:12 EST 2016. Contains 278900 sequences.