login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103440 Sum[d|n, d==1 mod 3, d^2] - Sum[d|n, d==2 mod 3, d^2]. 2
1, -3, 1, 13, -24, -3, 50, -51, 1, 72, -120, 13, 170, -150, -24, 205, -288, -3, 362, -312, 50, 360, -528, -51, 601, -510, 1, 650, -840, 72, 962, -819, -120, 864, -1200, 13, 1370, -1086, 170, 1224, -1680, -150, 1850, -1560, -24, 1584, -2208, 205, 2451, -1803, -288, 2210, -2808, -3, 2880, -2550 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

G. E. Andrews and B. C. Berndt, Your Hit Parade: The Top Ten Most Fascinating Formulas in Ramanujan's Lost Notebook, Notices Amer. Math. Soc., 55 (No. 1, 2008), 18-30. See p. 23, Equation (27).

LINKS

Table of n, a(n) for n=1..56.

J. Stienstra, Mahler measure, Eisenstein series and dimers

FORMULA

G.f.: F(q) = Sum[n>=1, A049347(n-1)*n^2*q^n/(1-q^n) ].

G.f.: F(q) = -qG'(q)/(9G(q)), with G(q) = Prod[n>=1, (1-q^n)^(9n*A049347(n-1)) ].

a(n) is multiplicative with a(3^e) = 1, a(p^e) = a(p) * a(p^(e-1)) - z * a(p^(e-2)) where z = kronecker(-3, p) * p^2 and a(p) = z + 1.

a(3*n) = a(n).

G.f.: Sum_{k>0} x^k * (1 - x^k - 6*x^(2*k) - x^(3*k) + x^(4*k)) / (1 + x^k + x^(2*k))^3. - Michael Somos, Oct 21 2007

G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 - v + w + 3*v^2 - 8*w^2 + 6*v*w - 8*u*w + 6*u*v - 9*v^3 - 54*u*v*w + 72*u*w^2 - 9*u^2*w. - Michael Somos, Dec 23 2007

EXAMPLE

q - 3*q^2 + q^3 + 13*q^4 - 24*q^5 - 3*q^6 + 50*q^7 - 51*q^8 + q^9 + ...

PROG

(PARI) {a(n) = if( n<1, 0, sumdiv( n, d, d^2 * kronecker( -3, d)))} /* Michael Somos, Oct 21 20007 */

(PARI) {a(n) = local(A, p, e, a0, a1, x, y, z); if(n<1, 0, A=factor(n); prod( k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==3, 1, z = kronecker( -3, p) * p^2 ; a0 = 1; a1 = y = z + 1; for(i=2, e, x = y * a1 - z * a0; a0 = a1; a1 = x); a1))))} /* Michael Somos, Oct 21 20007 */

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - eta(x + A)^9 / eta(x^3 + A)^3) / 9, n))} /* Michael Somos, Oct 21 20007 */

CROSSREFS

Equals A103637(n) - A103638(n). Cf. A002173.

A109041(n) = -9 * a(n) unless n=0. A014985(n) = a(2^n). -24 * A134340(n) = a(6*n+5).

Sequence in context: A184828 A053286 A008826 * A116483 A010290 A074960

Adjacent sequences:  A103437 A103438 A103439 * A103441 A103442 A103443

KEYWORD

sign,mult

AUTHOR

Ralf Stephan, Feb 11 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 21 17:16 EST 2014. Contains 252324 sequences.