login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103435 a(n) = 2^n * Fibonacci(n). 24
0, 2, 4, 16, 48, 160, 512, 1664, 5376, 17408, 56320, 182272, 589824, 1908736, 6176768, 19988480, 64684032, 209321984, 677380096, 2192048128, 7093616640, 22955425792, 74285318144, 240392339456, 777925951488, 2517421260800 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Cardinality of set of bracelets of size at most n that are tiled with two types of colored squares and four types of colored dominoes.

a(n) is also the diagonal element of the matrix A(i,j) whose first row (i=1) and first column (j=1) are the Fibonacci numbers: A(1,k)=A(k,1)=fib(k) and whose generic element is the sum of element in adjacent (preceding) row and column minus the absolute value of their difference. So a(n) = A(n,n) = A(i-1,j)+A(i,j-1)-abs(A(i-1,j)-A(i,j-1)). - Carmine Suriano, May 13 2010

a(n) is the coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) given for d=sqrt(x+1) by p(n,x)=((x+d)^n-(x-d)^n)/(2d), for n>=1.  The constant terms under this reduction are the absolute values of terms of A086344.  See A192232 for a discussion of reduction. - Clark Kimberling, Jun 29 2011

The exponential convolution of A000032 and A000045. - Vladimir Reshetnikov, Oct 06 2016

REFERENCES

A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 236.

LINKS

Table of n, a(n) for n=0..25.

Tom Edgar, Extending Some Fibonacci-Lucas Relations, Fib. Quarterly, 54 (2016), 79.

H. Kwong, An Alternate Proof of Sury's Fibonacci-Lucas Relation

D. Marques, A new Fibonacci-Lucas relation, Amer. Math. Monthly, 122 (2015), 683.

Ivica Martinjak, Complementary Families of the Fibonacci-Lucas Relations, arXiv:1508.04949 [math.CO], 2015.

B. Sury, A polynomial parent to a Fibonacci-Lucas relations, Amer. Math. Monthly, 121 (2014), 236.

Index entries for linear recurrences with constant coefficients, signature (2,4).

FORMULA

G.f.: 2*x / (1 - 2*x - 4*x^2).

a(n) = Sum_{i=0..n-1}( 2^i * Lucas(i) ).

a(n) = 2*a(n-1) + 4*a(n-2). - Carmine Suriano, May 13 2010

a(n) = a(-n) * -(-4)^n for all n in Z. - Michael Somos, Sep 20 2014

E.g.f.: 2*sinh(sqrt(5)*x)*exp(x)/sqrt(5). - Ilya Gutkovskiy, May 10 2016

EXAMPLE

a(5)=160=A(5,5)=A(4,5)+A(5,4)-abs[A(4,5)+A(5,4)]=80+80-0. - Carmine Suriano, May 13 2010

G.f. = 2*x + 4*x^2 + 16*x^3 + 48*x^4 + 160*x^5 + 512*x^6 + 1664*x^7 + ...

MATHEMATICA

Expand[Table[((1 + Sqrt[5])^n - (1 - Sqrt[5])^n)5/(5 Sqrt[5]), {n, 0, 25}]] (* Zerinvary Lajos, Mar 22 2007 *)

PROG

(MAGMA) [2^n *Fibonacci(n): n in [0..50]]; // Vincenzo Librandi, Apr 04 2011

(PARI) a(n)=fibonacci(n)<<n \\ Charles R Greathouse IV, Feb 03 2014

(PARI) concat(0, Vec(2*x/(1-2*x-4*x^2) + O(x^99))) \\ Altug Alkan, May 11 2016

CROSSREFS

a(n) = A006483(n) + 1 = 2*A085449(n) = 2*A063727(n-1), n>0.

First differences of A014334. Partial sums of A087131.

Sequence in context: A112638 A077162 A128903 * A119000 A034917 A215724

Adjacent sequences:  A103432 A103433 A103434 * A103436 A103437 A103438

KEYWORD

nonn,easy

AUTHOR

Ralf Stephan, Feb 08 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 21 07:23 EDT 2019. Contains 321367 sequences. (Running on oeis4.)