login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103431 Subsequence of the Gaussian primes, where only Gaussian primes a+bi with a>0, b>=0 are listed. Ordered by the norm N(a+bi)=a^2+b^2 and the size of the real part, when the norms are equal. a(n) is the real part of the Gaussian prime. Sequence A103432 gives the imaginary parts. 13
1, 1, 2, 3, 2, 3, 1, 4, 2, 5, 1, 6, 4, 5, 7, 2, 7, 5, 6, 3, 8, 5, 8, 4, 9, 1, 10, 3, 10, 7, 8, 11, 4, 11, 7, 10, 6, 11, 2, 13, 9, 10, 7, 12, 1, 14, 2, 2, 8, 13, 4, 15, 1, 16, 10, 13, 9, 14, 5, 16, 2, 17, 12, 13, 11, 14, 9, 16, 5, 18, 8, 17, 19, 7, 18, 10, 17, 6, 19, 1, 20, 3, 20, 14, 15, 12, 17 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Definition of Gaussian primes (Pieper, Die komplexen Zahlen, p. 122): 1) i+i, norm N(i+i) = 2. 2) Natural primes p with p = 3 mod 4, norm N(p) = p^2. 3) primes a+bi, a>0, b>0 with a^2 + b^2 = p = 1 mod 4, p natural prime. Norm N(a+bi) = p. b+ai is a different Gaussian prime number, b+ai can not be factored into a+bi and a unit. 4) All complex numbers from 1) to 3) multiplied by the units -1,i,-i, these are the associated numbers. The sequence contains all the Gaussian primes mentioned in 1) - 3).

Every complex number can be factored completely into the Gaussian prime numbers defined by the sequence, an additional unit as factor can be necessary. This factorization can be used to calculate the complex sigma, as defined by Spira. The elements a(n) are ordered by the size of their norm. If the two different primes a+bi and b+ai have the same norm, they are ordered by the size of the real part of the complex prime number. So a+bi follows b+ai in the sequence, if a > b.

Of course this is not the only possible definition. As primes p = 1 mod 4 can be factored in p = (-i)(a+bi)(b+ai) and the norm N(a+bi) = N(b+ai) = p, these primes a+bi occur much earlier in the sequence than p does in the sequence of natural primes. 4+5i with norm 41 occurs before prime 7 with norm 49.

REFERENCES

H. Pieper, "Die komplexen Zahlen", Verlag Harri Deutsch, p. 122

R. Spira, "The Complex Sum Of Divisors", American Mathematical Monthly, 1961 Vol. 68, p. 120-124

LINKS

Table of n, a(n) for n=1..87.

Sven Simon, List with Gaussian primes of A103431/A103432

Wikipedia, Table of Gaussian integer factorizations

CROSSREFS

Cf. A103432, A055025.

Sequence in context: A026600 A106560 A202495 * A238576 A239238 A125928

Adjacent sequences:  A103428 A103429 A103430 * A103432 A103433 A103434

KEYWORD

nonn

AUTHOR

Sven Simon, Feb 05 2005; corrected Feb 20 2005 and again on Aug 06 2006

EXTENSIONS

Edited (mostly to correct meaning of norm) by Franklin T. Adams-Watters, Mar 04 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 28 17:44 EST 2014. Contains 250367 sequences.