The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A103415 Triangle read by rows: T(n,k)=P(n+1) - sum(i=1,k,DT(n,k)), where P denotes the Pell numbers and DT the triangle version of A008288. 0
 1, 2, 1, 5, 4, 1, 12, 11, 6, 1, 29, 28, 21, 8, 1, 70, 69, 60, 35, 10, 1, 169, 168, 157, 116, 53, 12, 1, 408, 407, 394, 333, 204, 75, 14, 1, 985, 984, 969, 884, 653, 332, 101, 16, 1, 2378, 2377, 2360, 2247, 1870, 1189, 508, 131, 18, 1, 5741, 5740, 5721, 5576, 5001, 3712 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Triangle is generated from the product A*B of the infinite lower triangular matrices A = 1 1 1 1 3 1 1 5 5 1 ... and B = 1 1 1 1 1 1 1 1 1 1 ... Absolute values of coefficients of characteristic polynomials of n-th matrix are the (n+1)th row of A007318 (Pascal's triangle). As they are: x - 1 x^2 - 2*x + 1 x^3 - 3*x^2 + 3*x - 1 x^4 - 4*x^3 + 6*x^2 - 4*x + 1 x^5 - 5*x^4 + 10*x^3 - 10*x^2 + 5*x - 1 LINKS FORMULA a(n)=2a(n-1)+a(n-2)+2). Third diagonal = 2*n^2 + 4*n + 5 (see also A093328(n+3)). Fourth diagonal = 4/3*(n^3+5*n+3) for n>0. Determinant(A*B) = 1 for all n. EXAMPLE Triangle begins: 1 2 1 5 4 1 12 11 6 1 29 28 21 8 1 PROG (PARI) T(k, r) = if(r>k, 0, if(k==1, 1, if(k==2, 1, if(r==1||r==k, 1, T(k-1, r-1)+T(k-1, r)+T(k-2, r-1))))) ST(n, k) = sum(i=1, k, T(n, i)) P(n) = if(n==1, 1, if(n==2, 2, 2*P(n-1)+P(n-2))) BT(n, k) = P(n)-ST(n, k) for(i=1, 10, for(j=1, i, print1(BT(i, j-1), ", ")); print()) BM(n) = M=matrix(n, n); for(i=1, n, for(j=1, n, M[i, j]=T(i, j))); M IM(n) = M=matrix(n, n); for(i=1, n, for(j=1, n, if(j>i, M[i, j]=0, M[i, j]=1))); M BM(10)*IM(10) CROSSREFS First column = A000129(n+1) (Pell numbers). Second column = A005409 (Number of polynomials of height n: Row sums give A026937. Cf. A008288, A000129, A005409, A093328, A007318, A103416. Sequence in context: A299444 A110552 A129161 * A054456 A096164 A201166 Adjacent sequences:  A103412 A103413 A103414 * A103416 A103417 A103418 KEYWORD nonn,tabl AUTHOR Lambert Klasen (lambert.klasen(AT)gmx.net) and Gary W. Adamson, Feb 04 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 07:47 EST 2021. Contains 340360 sequences. (Running on oeis4.)