login
A103402
Palindromes p such that pi(p) is a palindromic prime.
5
3, 4, 5, 6, 11, 33, 555, 878, 5775, 6116, 919919, 58633685, 129707921, 16958285961, 867275572768, 50166722766105, 310439747934013, 4384495885944834, 5817988338897185
OFFSET
1,1
COMMENTS
From a suggestion from Zak Seidov, Feb 02 2005.
a(16) > 32*10^12. - Donovan Johnson, Dec 03 2009
MATHEMATICA
NextPalindrome[n_] := Block[ {l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[ idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[ idn, Ceiling[l/2]]]] FromDigits[ Take[ idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[ idn, Ceiling[l/2]], Reverse[ Take[ idn, Floor[l/2]]] ]], idfhn = FromDigits[ Take[ idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[ idfhn], Drop[ Reverse[ IntegerDigits[ idfhn]], Mod[l, 2]]]] ]]]];
p = 0; a = {}; Do[p = NextPalindrome[p]; q = PrimePi[p]; If[PrimeQ[q], r = IntegerDigits[q]; If[Reverse[r] == r, Print[{p, q}]; AppendTo[a, p]]], {n, 10^6}]; a
palQ[n_] := Reverse[x = IntegerDigits[n]] == x; t = {}; Do[If[palQ[n] && PrimeQ[x = PrimePi[n]] && palQ[x], AppendTo[t, n]], {n, 10^6}]; t (* Jayanta Basu, Jun 24 2013 *)
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Robert G. Wilson v, Feb 03 2005
EXTENSIONS
a(15) from Donovan Johnson, Dec 03 2009
a(16)-a(17) from Chai Wah Wu, Sep 04 2019
a(18)-a(19) from Giovanni Resta, Sep 12 2019
STATUS
approved