login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103347 Numerators of Sum_{k=1..n} 1/k^7 = Zeta(7,n). 6
1, 129, 282251, 36130315, 2822716691183, 940908897061, 774879868932307123, 99184670126682733619, 650750755630450535274259, 650750820166709327386387, 12681293156341501091194786541177, 12681293507322704937269896541177 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) gives the partial sums, Zeta(7,n), of Euler's Zeta(7). Zeta(k,n) is also called H(k,n) because for k=1 these are the harmonic numbers H(n) A001008/A002805.

For the denominators see A103348 and for the rationals Zeta(7,n) see the W. Lang link under A103345.

LINKS

Robert Israel, Table of n, a(n) for n = 1..336

FORMULA

a(n) = numerator(sum_{k=1..n} 1/k^7).

G.f. for rationals Zeta(7, n): polylogarithm(7, x)/(1-x).

MAPLE

f:= n -> numer(Psi(6, n+1)/720 + Zeta(7)):

map(f, [$1..20]); # Robert Israel, Mar 28 2018

MATHEMATICA

s=0; lst={}; Do[s+=n^1/n^8; AppendTo[lst, Numerator[s]], {n, 3*4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 24 2009 *)

Table[ HarmonicNumber[n, 7] // Numerator, {n, 1, 12}] (* Jean-Fran├žois Alcover, Dec 04 2013 *)

CROSSREFS

For k=1..6 see: A001008/A002805, A007406/A007407, A007408/A007409, A007410/A007480, A099828/A069052, A103345/A103346.

Sequence in context: A183553 A242229 A138586 * A291505 A275097 A238613

Adjacent sequences:  A103344 A103345 A103346 * A103348 A103349 A103350

KEYWORD

nonn,frac,easy

AUTHOR

Wolfdieter Lang, Feb 15 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 19 13:35 EST 2020. Contains 332044 sequences. (Running on oeis4.)