login
Number of segments of a perfect ruler with length n.
6

%I #21 Feb 23 2021 18:21:43

%S 0,1,2,2,3,3,3,4,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,9,9,9,9,

%T 9,9,9,10,10,10,10,10,10,10,11,11,11,11,11,11,11,12,12,12,12,12,12,12,

%U 12,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14

%N Number of segments of a perfect ruler with length n.

%C For definitions, references and links related to complete rulers see A103294.

%H F. Schwartau, Y. Schröder, L. Wolf and J. Schoebel, <a href="/A103298/b103298.txt">Table of n, a(n) for n = 0..244</a>

%H F. Schwartau, Y. Schröder, L. Wolf and J. Schoebel, <a href="https://dx.doi.org/10.21227/cd4b-nb07">MRLA search results and source code</a>, Nov 6 2020.

%H F. Schwartau, Y. Schröder, L. Wolf and J. Schoebel, <a href="https://doi.org/10.1109/OJAP.2020.3043541">Large Minimum Redundancy Linear Arrays: Systematic Search of Perfect and Optimal Rulers Exploiting Parallel Processing</a>, IEEE Open Journal of Antennas and Propagation, 2 (2021), 79-85.

%H <a href="/index/Per#perul">Index entries for sequences related to perfect rulers.</a>

%F a(n) = A046693(n) - 1.

%e a(11)=5 means that a perfect ruler with length 11 has 5 segments.

%Y Cf. A046693, A103297.

%K nonn

%O 0,3

%A _Peter Luschny_, Feb 28 2005

%E Extended using A046693 terms by _Vaclav Kotesovec_, Oct 20 2019