OFFSET
1,1
COMMENTS
Least number k such that there exists n partitions of k into 3 parts each having the same product.
The greatest number k such that there exists n partitions of k into 3 parts each having the same product: 18, 102, 492, 1752, ...
The number of members in each "class" of the set having n partitions into 3 parts each having the same product: 12, 54, 147, 397, ....
EXAMPLE
3 = 1+1+1 & 1*1*1 = 1.
13 = 6+6+1 = 9+2+2 & 6*6*1 = 9*2*2 = 36.
39 = 20+15+4 = 24+10+5 = 25+8+6 & 20*15*4 = 24*10*5 = 25*8*6 = 1200.
118 = 54+50+14 = 63+40+15 = 70+30+18 = 72+25+21 & 54*50*14 = 63*40*15 = 70*30*18 = 72*25*21 = 37800.
185 = 90+84+11 = 110+63+12 = 126+44+15 = 132+35+18 = 135+28+22 & 90*84*11 = 110*63*12 = 126*44*15 = 132*35*18 = 135*28*22 = 83160.
400 = 196+180+24 = 245+128+27 = 252+120+28 = 270+98+32 = 280+84+36 = 288+70+42 & 196*180*24 = 245*128*27 = 252*120*28 = 270*98*32 = 280*84*36 = 288*70*42 = 846720.
511 = 260+216+35 = 280+195+36 = 315+156+40 = 325+144+42 = 336+130+45 = 360+91+60 = 364+75+72 & 260*216*35 = 280*195*36 = 315*156*40 = 325*144*42 = 336*130*45 = 360*91*60 = 364*75*72 = 1965600.
1022 = 520+432+70 = 560+390+72 = 630+312+80 = 650+288+84 = 672+260+90 = 675+256+91 = 720+182+120 = 728+150+144 & 520*432*70 = 560*390*72 = 630*312*80 = 650*288*84 = 672*260*90 = 675*256*91 = 720*182*120 = 728*150*144 = 15724800.
1287 = 600+588+99 = 648+539+100 = 720+462+105 = 770+405+112 = 825+336+126 = 840+315+132 = 880+245+162 = 882+240+165 = 891+200+196 & 600*588*99 = 648*539*100 = 720*462*105 = 770*405*112 = 825*336*126 = 840*315*132 = 880*245*162 = 882*240*165 = 891*200*196 = 34927200.
From Donovan Johnson, Mar 29 2010: (Start)
2574 = 198+1176+1200 = 200+1078+1296 = 210+924+1440 = 224+810+1540 = 231+768+1575 = 252+672+1650 = 264+630+1680 = 324+490+1760 = 330+480+1764 = 392+400+1782 & 198*1176*1200 = 200*1078*1296 = 210*924*1440 = 224*810*1540 = 231*768*1575 = 252*672*1650 = 264*630*1680 = 324*490*1760 = 330*480*1764 = 392*400*1782 = 279417600.
4279 = 378+1925+1976 = 380+1820+2079 = 385+1710+2184 = 399+1540+2340 = 429+1330+2520 = 440+1274+2565 = 504+1045+2730 = 532+975+2772 = 550+936+2793 = 637+792+2850 = 684+735+2860 & 378*1925*1976 = 380*1820*2079 = 385*1710*2184 = 399*1540*2340 = 429*1330*2520 = 440*1274*2565 = 504*1045*2730 = 532*975*2772 = 550*936*2793 = 637*792*2850 = 684*735*2860 = 1437836400.
8558 = 756+3850+3952 = 760+3640+4158 = 770+3420+4368 = 798+3080+4680 = 858+2660+5040 = 880+2548+5130 = 896+2475+5187 = 1008+2090+5460 = 1064+1950+5544 = 1100+1872+5586 = 1274+1584+5700 = 1368+1470+5720 & 756*3850*3952 = 760*3640*4158 = 770*3420*4368 = 798*3080*4680 = 858*2660*5040 = 880*2548*5130 = 896*2475*5187 = 1008*2090*5460 = 1064*1950*5544 = 1100*1872*5586 = 1274*1584*5700 = 1368*1470*5720 = 11502691200.
11777 = 171+5600+6006 = 175+4914+6688 = 198+3675+7904 = 224+3003+8550 = 228+2925+8624 = 240+2717+8820 = 245+2640+8892 = 385+1512+9880 = 416+1386+9975 = 462+1235+10080 = 540+1045+10192 = 600+936+10241 = 637+880+10260 & 171*5600*6006 = 175*4914*6688 = 198*3675*7904 = 224*3003*8550 = 228*2925*8624 = 240*2717*8820 = 245*2640*8892 = 385*1512*9880 = 416*1386*9975 = 462*1235*10080 = 540*1045*10192 = 600*936*10241 = 637*880*10260 = 5751345600.
24377 = 1196+11400+11781 = 1197+11220+11960 = 1232+9690+13455 = 1254+9200+13923 = 1360+7722+15295 = 1520+6435+16422 = 1547+6270+16560 = 1748+5304+17325 = 1890+4807+17680 = 1932+4680+17765 = 2244+3933+18200 = 2261+3900+18216 = 2448+3575+18354 = 2907+2990+18480 & 1196*11400*11781 = 1197*11220*11960 = 1232*9690*13455 = 1254*9200*13923 = 1360*7722*15295 = 1520*6435*16422 = 1547*6270*16560 = 1748*5304*17325 = 1890*4807*17680 = 1932*4680*17765 = 2244*3933*18200 = 2261*3900*18216 = 2448*3575*18354 = 2907*2990*18480 = 160626866400.
23554 = 342+11200+12012 = 350+9828+13376 = 351+9728+13475 = 396+7350+15808 = 448+6006+17100 = 456+5850+17248 = 480+5434+17640 = 490+5280+17784 = 665+3584+19305 = 770+3024+19760 = 832+2772+19950 = 924+2470+20160 = 1080+2090+20384 = 1200+1872+20482 = 1274+1760+20520 & 342*11200*12012 = 350*9828*13376 = 351*9728*13475 = 396*7350*15808 = 448*6006*17100 = 456*5850*17248 = 480*5434*17640 = 490*5280*17784 = 665*3584*19305 = 770*3024*19760 = 832*2772*19950 = 924*2470*20160 = 1080*2090*20384 = 1200*1872*20482 = 1274*1760*20520 = 46010764800.
(End)
From Duncan Moore, Sep 02 2017: (Start)
46111 = 4446+20160+21505 = 4455+19760+21896 = 4576+17595+23940 = 4680+16560+24871 = 4725+16192+25194 = 4807+15600+25704 = 4928+14858+26325 = 5100+13984+27027 = 5187+13600+27324 = 5520+12376+28215 = 5610+12096+28405 = 5712+11799+28600 = 6270+10465+29376 = 7360+8721+30030 = 7735+8280+30096 = 7904+8100+30107 & 4446*20160*21505 = 4455*19760*21896 = 4576*17595*23940 = 4680*16560*24871 = 4725*16192*25194 = 4807*15600*25704 = 4928*14858*26325 = 5100*13984*27027 = 5187*13600*27324 = 5520*12376*28215 = 5610*12096*28405 = 5712*11799*28600 = 6270*10465*29376 = 7360*8721*30030 = 7735*8280*30096 = 7904*8100*30107 = 1927522396800.
99085 = 3770+47120+48195 = 3780+45240+50065 = 3952+37758+57375 = 3978+37107+58000 = 4176+33250+61659 = 4199+32886+62000 = 4216+32625+62244 = 4495+29070+65520 = 4500+29016+65569 = 4914+25296+68875 = 5320+22620+71145 = 7280+15390+76415 = 7395+15120+76570 = 7905+14040+77140 = 8370+13195+77520 = 9367+11718+78000 = 9945+11020+78120 & 3770*47120*48195 = 3780*45240*50065 = 3952*37758*57375 = 3978*37107*58000 = 4176*33250*61659 = 4199*32886*62000 = 4216*32625*62244 = 4495*29070*65520 = 4500*29016*65569 = 4914*25296*68875 = 5320*22620*71145 = 7280*15390*76415 = 7395*15120*76570 = 7905*14040*77140 = 8370*13195*77520 = 9367*11718*78000 = 9945*11020*78120 = 8561475468000.
165490 = 14000+72488+79002 = 14022+71500+79968 = 14080+69615+81795 = 14280+65520+85690 = 14432+63308+87750 = 14820+59040+91630 = 14896+58344+92250 = 16236+49504+99750 = 16380+48790+100320 = 16830+46740+101920 = 17290+44880+103320 = 17589+43776+104125 = 18720+40180+106590 = 19152+39000+107338 = 20090+36720+108680 = 21648+33592+110250 = 23940+30030+111520 = 25840+27720+111930 & 14000*72488*79002 = 14022*71500*79968 = 14080*69615*81795 = 14280*65520*85690 = 14432*63308*87750 = 14820*59040*91630 = 14896*58344*92250 = 16236*49504*99750 = 16380*48790*100320 = 16830*46740*101920 = 17290*44880*103320 = 17589*43776*104125 = 18720*40180*106590 = 19152*39000*107338 = 20090*36720*108680 = 21648*33592*110250 = 23940*30030*111520 = 25840*27720*111930 = 80173757664000
(End)
MATHEMATICA
tanya[n_] := tanya[n] = Max[Length /@ Split[ Sort[Times @@@ Partition[Last /@ Flatten[ FindInstance[a + b + c == n && a >= b >= c > 0, {a, b, c}, Integers, Round[n^2/12]]], 3]]]];
CROSSREFS
KEYWORD
nonn,more
AUTHOR
David W. Wilson, Jan 27 2005
EXTENSIONS
Additional comments and examples from Joseph Biberstine (jrbibers(AT)indiana.edu) and Robert G. Wilson v, Jul 27 2006
Edited by N. J. A. Sloane, Apr 29 2007
a(10)-a(15) from Donovan Johnson, Mar 29 2010
a(16)-a(18) from Duncan Moore, Sep 02 2017
STATUS
approved